

Top reconstruction and spin correlations

Romain Madar - LPC Top LHC France Workshop April 2021

How to observe top quark spin?

Spin state = behaviour under rotation \rightarrow angles of decay products

The Top quark decays before hadronization:

- spin information transmitted to decay products (W, b)
- ullet secondary decay products only (ℓ, ν, b) are detected

Angle of decay products in the top rest-frame, a proxy to spin state:

$$\frac{1}{\Gamma_t} \frac{\mathrm{d}\Gamma_t}{\mathrm{d}\cos\theta} \; = \; \frac{1}{2} \left(1 + A\cos\theta \right)$$

$$A_{\ell,q} = 1$$
, $A_{\nu,q'} = -0.31$, $A_b = -0.41$

How to observe top quark spin correlations?

Spin state = behaviour under rotation \rightarrow angles of decay products

Cross-section as function of lepton directions:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\hat{\ell}_1\mathrm{d}\hat{\ell}_2} \, \propto \, \left(1 \, + \, B_1\cdot\hat{\ell}_1 \, + \, B_2\cdot\hat{\ell}_2 \, - \, \hat{\ell}_1\cdot\textit{C}\cdot\hat{\ell}_2\right)$$

 $(\hat{\ell}_i \equiv \text{unity vector aligned with the lepton } i \text{ direction})$

15 observables for 2 quarks and 3 axes

- polarizations: B_i (2 × 3-vectors)
- correlations: C (3 × 3 matrix)

Arbitrary choices of (quantization) axes

- **1.** lab-frame axes $(\vec{x}, \vec{y}, \vec{z})$: beam basis
- **2.** ZMF of top quarks $(\vec{k}, \vec{r}, \vec{n})$: helicity basis

Top reconstruction: motivation, challenge & methods

Spin observables \sim angles in top quark rest-frame

- \bullet what we need: $\vec{p}^{\;\nu},\; \vec{p}^{\;\ell}$ and $\vec{p}^{\;b}$
- what we get: E_T^{miss} , \vec{p}^{ℓ} and $\{\vec{p}^j$, b-tag}

Two difficulties: neutrinos v.s. missing energy (2ℓ) & jets combinatorics

Two tested strategies to handle \vec{p}_{ν} 's ambiguity

- 1. scan kinematics (η_{ν} 's) and weight each configuration based on $E_{T}^{\rm miss}$ resolution, keep the highest weight kinematics. ν Weighter method [PRD 80 092006]
- 2. resolve analytically the equations \rightarrow 0, 2 or 4 solutions, keep the lowest $m_{t\bar{t}}$ solution. Sonnenschein and Ellipse methods [PRD 78 079902, NIMA 2013 10 039]

Trying different kinematics for jet combinatorics but not only ...

- $\bullet~\nu \mbox{Weighter:}$ intrinsic to the method, considering on top several jets combinations
- analytics: smear object kinematics (and jet comb.) to reduce 0-solution cases

Top reconstruction performances - simulation

Two main aspects:

- 1. efficiency (left)
- 2. quality (bottom)

 $w \equiv \text{weight from } \nu \text{W (high} = \text{better)}$

 $N \equiv$ number of smeared kinem with a solution

Detector response for one spin observable - simulation

Correlations between two top axes: defining $c_{kk} \equiv \cos \theta_+^k \cos \theta_-^k$, and A the correlation, integrating $\frac{\mathrm{d}^2 \sigma}{\mathrm{d} \ell_1 \mathrm{d} \ell_2}$ over all the other angles:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}c_{kk}} = \frac{\sigma}{4} \left(1 - A c_{kk} \right) \rightarrow A = -9 \left\langle c_{kk} \right\rangle$$

 c_{kk} distribution should be well reconstructed, ideally a purely diagonal migration matrix

