Top reconstruction and spin correlations

Romain Madar - LPC
Top LHC France Workshop
April 2021

How to observe top quark spin?

Spin state $=$ behaviour under rotation \rightarrow angles of decay products

The Top quark decays before hadronization:

- spin information transmitted to decay products (W, b)
- secondary decay products only (ℓ, ν, b) are detected

Angle of decay products in the top rest-frame, a proxy to spin state:

$$
\begin{gathered}
\frac{1}{\Gamma_{t}} \frac{\mathrm{~d} \Gamma_{t}}{\mathrm{~d} \cos \theta}=\frac{1}{2}(1+A \cos \theta) \\
A_{\ell, q}=1, A_{\nu, q^{\prime}}=-0.31, A_{b}=-0.41
\end{gathered}
$$

How to observe top quark spin correlations?

Spin state $=$ behaviour under rotation \rightarrow angles of decay products
Cross-section as function of lepton directions:

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \hat{\ell}_{1} \mathrm{~d} \hat{\ell}_{2}} \propto\left(1+B_{1} \cdot \hat{\ell}_{1}+B_{2} \cdot \hat{\ell}_{2}-\hat{\ell}_{1} \cdot C \cdot \hat{\ell}_{2}\right)
$$

($\hat{\ell}_{i} \equiv$ unity vector aligned with the lepton i direction)
15 observables for 2 quarks and 3 axes

- polarizations: $B_{i}(2 \times 3$-vectors $)$
- correlations: $C(3 \times 3$ matrix $)$

Arbitrary choices of (quantization) axes

1. lab-frame axes $(\vec{x}, \vec{y}, \vec{z})$: beam basis
2. ZMF of top quarks $(\vec{k}, \vec{r}, \vec{n})$: helicity basis

[plot from PRD 100 072002]

Top reconstruction: motivation, challenge \& methods

Spin observables \sim angles in top quark rest-frame

- what we need: $\vec{p}^{\nu}, \vec{p}^{\ell}$ and \vec{p}^{b}
- what we get: $E_{T}^{\text {miss }}, \vec{p}^{\ell}$ and $\left\{\vec{p}^{j}, b\right.$-tag $\}$

Two difficulties: neutrinos v.s. missing energy (2 2) \& jets combinatorics
Two tested strategies to handle \vec{p}_{ν} 's ambiguity

1. scan kinematics (η_{ν} 's) and weight each configuration based on $E_{T}^{\text {miss }}$ resolution, keep the highest weight kinematics. ν Weighter method [PRD 80 092006]
2. resolve analytically the equations $\rightarrow 0,2$ or 4 solutions, keep the lowest $m_{t \bar{t}}$ solution. Sonnenschein and Ellipse methods [PRD 78 079902, NIMA 201310 039]

Trying different kinematics for jet combinatorics but not only ...

- ν Weighter: intrinsic to the method, considering on top several jets combinations
- analytics: smear object kinematics (and jet comb.) to reduce 0 -solution cases

Top reconstruction performances - simulation

Two main aspects:

1. efficiency (left)
2. quality (bottom)
$w \equiv$ weight from $\nu \mathrm{W}$ (high $=$ better)
$N \equiv$ number of smeared kinem with a solution

N[successful iteration] v.s. NW weight

w<0.2
$\mathrm{N}<10$

Normalized distributions

pT [top]: truth - SO reco

Detector response for one spin observable - simulation

Correlations between two top axes: defining $c_{k k} \equiv \cos \theta_{+}^{k} \cos \theta_{-}^{k}$, and A the correlation, integrating $\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \hat{\ell}_{1} \mathrm{~d} \hat{\ell}_{2}}$ over all the other angles:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} c_{k k}}=\frac{\sigma}{4}\left(1-A c_{k k}\right) \quad \rightarrow \quad A=-9\left\langle c_{k k}\right\rangle
$$

$c_{k k}$ distribution should be well reconstructed, ideally a purely diagonal migration matrix

