Analysis of tīW/tīH in multi-lepton final states

Jun Guo^a, Emmanuel Monnier^b, Chenliang Wang^{a, b}

^aShanghai Jiao Tong University ^bCentre de Physique des Particules de Marseille

Introduction

- The top-quark Yukawa coupling can be probed directly by measuring the $t\bar{t}H$ production.
- A search for the production in multilepton final states was performed, based on an integrated luminosity of 80 fb^{-1} , ATLAS-CONF-2019-045.
- Six final states were analysed, categorised by the number and flavour of lepton candidates.
- in agreement with the SM prediction of $507^{+35}_{-50} fb^{-1}$.

Chenliang Wang

6 April 2021

Top LHC France 2021

Challenge and motivation

Signifiant **mismodeling** observed (excess) of $t\bar{t}W$ in the previous round of analysis \bigcirc

- $\lambda^{2lLJ} = 1.56 \pm 0.29$, $\lambda^{2lHJ} = 1.26 \pm 0.19$ and $\lambda^{3l} = 1.68 \pm 0.29$
- Similar excesses observed, e.g. in 4tops analysis
- Latest $t\bar{t}H ML$ (CMS-PAS-HIG-19-008) results also suggests a high normalization, $\lambda^{ttW} = 1.43 \pm 0.21$.

Measure inclusive and differential σ of ttW production followed by ttH measurement. \bigcirc

- Targeting multi-lepton (ML) final states and using full Run 2 data
- Gain better understanding of the process then improve ttHML analysis sensitivity

Chenliang Wang

Top LHC France 2021

Prompt lepton veto & selection optimisation

• Non-prompt lepton BDT was applied in the 80 fb^{-1} ttH-ML analysis. An optimised version of the BDT is under development. (USTC Team)

• Studies to optimise 21 and 31 channels' definition were carried out, based on the new BDT. The selections applied in the last round still show a good sensitivities.

Chenliang Wang

Top LHC France 2021

2

3

6 April 2021

Key component: Non-prompt lepton estimation

Matrix Method

- The matrix method is a data driven technique for estimating the contamination of fake leptons.
- Define loose and tight regions, calculate the rates of the fake and the prompt, estimate the fake in SR
- Advantage: weak dependence on MC

$$\begin{pmatrix} N^{TT} \\ N^{TT} \\ N^{TT} \\ N^{TT} \\ N^{TT} \\ N^{TT} \end{pmatrix} = \begin{pmatrix} \varepsilon_{r,1}\varepsilon_{r,2} & \varepsilon_{r,1}\varepsilon_{f,2} & \varepsilon_{f,1}\varepsilon_{r,2} & \varepsilon_{f,1}\varepsilon_{f,2} \\ \varepsilon_{r,1}\varepsilon_{r,2} & \varepsilon_{r,1}\varepsilon_{f,2} & \varepsilon_{f,1}\varepsilon_{r,2} & \varepsilon_{f,1}\varepsilon_{f,2} \end{pmatrix} \begin{pmatrix} N^{rr} \\ N^{rf} \\ N^{fr} \\ N^{fr} \\ N^{ff} \end{pmatrix}$$

Chenliang Wang

Templet fit Method \bigcirc

- A semi-data-driven method, relies on the truth information to define different types of fake leptons,
- Within this method, the normalisation of the different fakes are left free-floating in a fit to data, and these NFs are used to correct the fakes MC estimates.

• Measure the XS of $t\bar{t}W$ as a function of different observables, njets, leptonPt ... Unfolding

Top LHC France 2021

6 April 2021

Summary

 \sim Full Run 2 ttW/ttH-ML analyses are developed in parallel and their status was presented:

• New Non-prompt lepton BDT tool improves the rejection and benefits the analysis sensitivity.

• Two approaches are explored for the fakes background estimate:

Data-driven matrix method and template fit method

After finalising the estimation of fakes, the XS of ttW will be measured. \bigcirc

Top LHC France 2021

6 April 2021

