EFT AND TOP: EXPERIMENTAL

Nicolas TONON (DESY)

on behalf of the ATLAS & CMS Collaborations

Top LHC France, 6th April 2021

INTRODUCTION

- No clear sign of new physics (BSM) at LHC so far...
 - ... and future accelerators in coming decade(s)
 will increase ∫L, not √s
- Many BSM theories predict sizeable deviations of top quark's couplings w.r.t. SM predictions
- Most of canonical top quark processes at LHC have reached precision era (systematics-limited)

Motivates ambitious top physics programme to **reveal new physics** indirectly **through precision** measurements

EFFECTIVE FIELD THEORY

arXiv:1802.07237 Interpreting top-quark LHC measurements

BSM effects described by finite number of EFT
 operators, whose strengths are encoded into
 Wilson coefficients (WCs) ↔ theory parameters

- Good scalability
- Easily combinable in global fits beyond LHC
- Treat all backgrounds SM-like

 Many assumptions, overestimate uncertainties, miss correlations, ...

Post-measurement interpretation

- Optimal sensitivity to Wilson coefficients
- Minimal assumptions
- Can probe EFT in all sensitive processes
- In-situ constraint of systematics considering correlations
- Novel approach, less experience with combination

Direct measurement

at detector-level

Reinterpret inclusive measurement

- Wilson coeff. constrained using
 straightforward EFT parameterization
- Scalable & combinable
- No MC EFT sample required
- Maximal assumptions

Post-measurement interpretation

Direct measurement

at detector-level

Inclusive 4 TOPS

- Very rare process, not yet observed
 - > $\sigma(SM) = 9.2$ fb, $\mathcal{O}(10^5)$ smaller than tt background
- Target 1l and 2l-OS final states with jets
- Train BDTs to assign jets & isolate signal
- Results combined with same-sign 2ℓ + 3ℓ analysis
 - > Observed limit = 3.6 * σ (SM)
 - Obs. (exp.) significance = 1.4 (1.1) std.dev.
- Highly sensitive to 4-heavy-quark operators
- Parameterization derived at gen-level :

$$\sigma_{t\bar{t}t\bar{t}\bar{t}} = \sigma_{t\bar{t}t\bar{t}\bar{t}}^{\text{SM}} + \frac{1}{\Lambda^2} \sum_k C_k \sigma_k^{(1)} + \frac{1}{\Lambda^4} \sum_{j \le k} C_j C_k \sigma_{j,k}^{(2)}$$

95 % CL upper limits derived on individual operators, marginalizing other operators

35.9 fb

6

CMS

- ATLAS Run2 result : [ATLAS-CONF-2021-013]
- Obs. (exp.) significance : 4.7 (2.6) std.dev.

Operator	Expected C_k / Λ^2 (TeV ⁻²)	Observed (TeV $^{-2}$)
\mathcal{O}^1_{tt}	[-2.0, 1.9]	[-2.2, 2.1]
\mathcal{O}_{QQ}^1	[-2.0, 1.9]	[-2.2, 2.0]
\mathcal{O}^1_{Qt}	[-3.4, 3.3]	[-3.7, 3.5]
\mathcal{O}_{Qt}^8	[-7.4, 6.3]	[-8.0, 6.8]

TT CHARGE ASYMMETRY

- $PDF(q) := PDF(\overline{q}) \rightarrow t\overline{t}$ charge asymmetry @ pp collider
 - Asymmetric $q\bar{q}/qg$ contributions diluted in dominant gg fusion \rightarrow Subtle effect
 - A_c altered by several BSM models (anomalous couplings, Z', ...)
- l+jets channel; resolved & boosted topologies
- Inclusive measurement (statistics-limited) :
 - Evidence for non-zero value (4σ)
- Differential measurements unfolded at parton-level
- Sensitive to 7 EFT operators → Flavour assumptions
 → Sensitivity condensed into 1 linear combination (C⁻)
- Compare measurements with EFT model → Tighest bounds

Inclusive

 $A_{\rm C} = 0.0060 \pm 0.0015$ (stat+syst.)

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ differential A^{tt}_C vs. NNLO QCD + NLO EW m,, interval $-\Lambda^{-2} - \Lambda^{-2} + \Lambda^{-4}$ 68% C.L. limits > 1500 GeV 1000 - 1500 GeV 750 - 1000 GeV 500 - 750 GeV 0 - 500 GeV inclusive LHC8 combination Tevatron combination -8 n 2 ATLAS-CONF-2019-026 C [TeV⁻²]

Reinterpret inclusive measurement

- Wilson coeff. constrained using straightforward EFT parameterization
- Scalable & combinable
- No MC EFT sample required
- Maximal assumptions

Post-measurement interpretation

Reinterpret unfolded differential measurement

- Quantity(ies) sensitive to EFT are measured at particle/parton-level
- Need differential MC EFT at gen-level
- Combinable if bin correlations are provided
- Ignore EFT effects on acceptance/efficiency

8

Direct measurement at detector-level Unfolded diff. TT POLARIZ. & SPIN CORREL.

CMS 35.9 fb⁻¹ 9

- 2ℓOS + b-jets final states
- Differential tt cross section measurement as a function of polarization and spin correl. observables
 - > Unfolded at parton-level, consistent with SM

- Top chromomagnetic dipole moment (CMDM) predicted by SM, modified in 2HDM/SUSY/technicolor/etc.
- [≻] Related to C_{tG} operator → Modifies yield, kinematics, spin structure
- 95% CL limit on c_{tG} obtained from simultaneous X² fit to several differential spin distributions
 - Sensitivity improved by ~ 30 % w.r.t. previous CMS analysis, mostly due to more powerful observables

10.1103/PhysRevD.100.072002

Reinterpret inclusive measurement

- Wilson coeff. constrained using straightforward EFT parameterization
- Scalable & combinable
- No MC EFT sample required
- Maximal assumptions

Hybrid measurement at detector-level

a) Parameterize yields with EFT at gen-level,

translate to detector-level assuming SM shapes

Direct measurement at detector-level

Post-measurement interpretation

Reinterpret unfolded differential measurement

- Quantity(ies) sensitive to EFT are measured at particle/parton-level
- Need differential MC EFT at gen-level
- Combinable if bin correlations are provided
- Ignore EFT effects on acceptance/efficiency

BSM SEARCH IN TT/TW→2L

2l channel

Hybrid

- Event categorized by :
 - lepton channel
 - jet/bjet multiplicities
- electrone a چو ه $\mathcal{P}_{\mathbf{g}}^{\mathbf{g}}$ C_{tG} g 00000 $\overrightarrow{C_{aq}^{(3)}}, C_{tW}^{\prime \gamma}$. 9999n' مومومومومو Leeeeeeeee tt C_{uG/cG} tW + ttu/c FCNC) tw mm d/s
- Train dedicated **neural networks** to :
- Isolate the tW process (+ sensitivity)
- Distinguish FCNC signatures from SM
- EFT contributions estimated at gen-level

 extrapolated to detector-level
- Extract individual limits from simultaneous fit to yields or NN distributions in all categories
 - First step towards more global fits

10.1140/epjc/s10052-019-7387-y

DESY. | Top LHC France | Nicolas Tonon, April 6th 2021

TT+V INCLUSIVI

10.22323/1.276.0237

- Simultaneous inclusive $\sigma(t\bar{t}Z) \& \sigma(t\bar{t}W)$ measurements in $2\ell/3\ell/4\ell$ channels
- Fit to event yields in categories based on object multiplicities / properties

- Constrain 4 Wilson coefficients separately
 - Fit to 3l/4l categories targeting ttZ

Coemcients	$C_{\phi Q}/\Lambda^2$	$C_{\phi t}/\Lambda^2$	C_{tB}/Λ^2	C_{tW}/Λ^2
Previous indirect constraints at 68% CL	[-4.7, 0.7]	[-0.1, 3.7]	[-0.5, 10]	[-1.6, 0.8]
Previous direct constraints at 93% CL	[-1.5, 1.5]	[-9.7, 8.3]	[-0.9, 4.0]	[-0.2, 0.7]
Expected limit at 68% CL	[-2.1, 1.9]	[-3.8, 2.7]	[-2.9, 3.0]	[-1.8, 1.9]
Expected limit at 95% CL	[-4.5, 3.6]	[-23, 4.9]	[-4.2, 4.3]	[-2.6, 2.6]
Observed limit at 68% CL	[-1.0, 2.7]	[-2.0, 3.5]	[-3.7, 3.5]	[-2.2, 2.1]
Observed limit at 95% CL	[-3.3, 4.2]	[-25, 5.5]	[-5.0, 5.0]	[-2.9, 2.9]
Expected limit at 68% CL (linear)	[-1.9, 2.0]	[-3.0, 3.2]	_	_
Expected limit at 95% CL (linear)	[-3.7, 4.0]	[-5.8, 6.3]	—	-
Observed limit at 68% CL (linear)	[-1.0, 2.9]	[-1.8, 4.4]	_	-
Observed limit at 95% CL (linear)	[-2.9, 4.9]	[-4.8, 7.5]	-	-

Hybrid

Reinterpret inclusive measurement

- Wilson coeff. constrained using straightforward EFT parameterization
- Scalable & combinable
- No MC EFT sample required
- Maximal assumptions

Hybrid measurement at detector-level

a) **Parameterize yields with EFT at gen-level**, translate to detector-level assuming SM shapes

b) **Reweight distributions as (SM+EFT/SM) at gen-level**, translate to detector-level under SM assumption

Post-measurement interpretation

Reinterpret unfolded differential measurement

- Quantity(ies) sensitive to EFT are measured at particle/parton-level
- Need differential MC EFT at gen-level
- Combinable if bin correlations are provided
- Ignore EFT effects on acceptance/efficiency

Direct measurement at detector-level

Hybrid TTZ INCL./DIFFERENTIAL

14

Procedure :

a) **Produce gen-level samples** for SM & SM+EFT (LO), in fine grid of EFT parameter space

b) Calculate weights SM+EFT/SM in bins of both observables, before event selection

c) **Apply weights to detector-level** (NLO) SM sample to emulate EFT contributions

- Inclusive/differential measurements of σ(ttZ) in good agreement with NLO+NNLL predictions
- Constrain 4 EFT operators impacting t-Z coupling
- Up to +20 % sensitivity from shape information

ΤΤΥ INCL./DIFFERENTIAL

CMS Preliminarv

Simulation

 $\pm 1\sigma$ (stat.)

-iducial cross section [fb]

10

Sim. / Obs.

50

150

- = 1 e or μ (p_T>25) / = 1 γ (p_T>20) / ≥ 3 j (p_T>30) / ≥ 1 bjet (ϵ ~70 %)
- **Constrain main backgrounds in-situ** with dedicated sidebands ٠
- Simultaneous fit to 12 SR + 34 CR categories

 $= 800 \pm 46$ (syst) \pm 7 (stat) fb $(t\bar{t}\gamma)$

ATLAS Run2 tty+tWy fiducial measurement : JHEP 09 (2020) 049

Particle-level unfolding to pt(γ), $|\eta(\gamma)|$, $\Delta R(\ell, \gamma)$

Hybrid

- All results agree with predictions
- **Constrain 2 EFT operators** impacting t- γ/Z vertices

CMS

Reinterpret inclusive measurement

- Wilson coeff. constrained using straightforward EFT parameterization
- Scalable & combinable
- No MC EFT sample required
- Maximal assumptions

Hybrid measurement at detector-level

a) **Parameterize yields with EFT at gen-level**, translate to detector-level assuming SM shapes

b) Reweight distributions as (SM+EFT/SM) at gen-level, translate to detector-level under SM assumption

Post-measurement interpretation

Reinterpret unfolded differential measurement

- Quantity(ies) sensitive to EFT are measured at particle/parton-level
- Need differential MC EFT at gen-level
- Combinable if bin correlations are provided
- Ignore EFT effects on acceptance/efficiency

Direct measurement at detector-level

Direct EFT measurement

- ~ no SM assumption
- Consider EFT in all sensitive processes
 - \rightarrow Need full SM+EFT sample for each
- Simultaneous fit to multiple regions

Direct FCNC T \rightarrow ZQ & T \rightarrow YQ

• $t \rightarrow Zq / 3\ell$ channel / FCNC in $t\bar{t}$ decay

[Model:	SM	QS	2HDM	FC 2HDM	MSSM	RPV SUSY	RS	EMF
	$\mathcal{B}(t \to qZ)$:	10^{-14}	10^{-4}	10^{-6}	10^{-10}	10^{-7}	10^{-6}	10^{-5}	10^{-6}

Fit to kinematic distributions in several SRs/CRs

→ Constrain Wilson coefficients

Direct

- Target {tīll/tīlv/tllq/tīH/tHq} processes simultaneously in {2l SS/3l/4l + bjets} channels
- Constrain 16 EFT operators impacting top quark vertices
- Signal event weights parameterized with all Wilson coeffs.
 - Full detector simulation of SMEFT samples
 - Categorization on objects multiplicities & properties
 Enhance sensitivity to different processes / operators
- Important step towards direct measurements accounting for EFT in all sensitive processes !

CMS

41.5 fb

18

10.1007/JHEP03(2021)095

DESY. | Top LHC France | Nicolas Tonon, April 6th 2021

- Top physics @ LHC has entered precision differential era for good
 - EFT measurements a key part of future physics programme & LHC legacy
- ATLAS & CMS Top groups continuously improving their EFT strategies
 - Already numerous publications employing different approaches with pros/cons

Other CMS EFT summary plots in backup

TOWARDS RUN 3

Trends

- EFT interpretations are becoming frequent in t(t)+X analyses
- Shifting from reinterpretations of inclusive → differential measurements
- Expect more and more direct EFT measurements in future
- Rares top quark processes (tX, tttt, ...) a crucial component of EFT searches

Many avenues to further improve treatment of / sensitivity to EFT

- More studies needed : include EFT effects in top decay, validate/use new NLO models, etc.
- Simultaneous fits to multiple processes & operators ↔ Physics-driven approach
 - Simulation & fits more challenging ! Important to gain experience now
- Make maximal use of available information (→ differential, machine-learning, MEM, etc.)
- <u>Ambitious objective</u>: global fit in the top quark sector through combinations between...
 - > analyses \rightarrow orthogonal event selections, unified statistical framework, etc.
 - experiments → common procedures/assumptions (cf.TopLHCWG), etc.

CMS TOP EFT SUMMARY PLOTS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOPSummaryFigures

139 fb⁻

- WZ/ZZ+light jets normalizations free in fit
- Parton shower, tZ/WZ/ZZ modeling, b-tagging

In agreement (and similar precision) as NLO+NNLL prediction :

 $\sigma_{t\bar{t}Z} = 1.05 \pm 0.05 \text{ (stat.)} \pm 0.09 \text{ (syst.) pb}$

Eur. Phys. J. C 79, 249 (2019) $0.86^{+0.07}_{-0.08}~{
m (scale)} \pm 0.03~{
m (PDF} + lpha_S)~{
m pb}$

- Differential measurements versus
 9 observables (↔ Z, tt, njets)
 - Parton- & particle-level

