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Why is it important?

Gauge sector of the Standard Model (SM)

B Completely fixed by the gauge invariance once the particle content

(and its quantum numbers) are fixed

B Tested with great precision at the collider experiments at energy scales

~ O(100GeV)

Flavor sector of SM

B SM (Yukawa) couplings not fixed by symmetry

B What underlying symmetry is so badly broken that the quark masses cover 5
orders of magnitudes? [ m, 4 ~ O(1MeV) — m; ~ O(100GeV) ]

B Why there are complex Yukawa couplings giving rise to the CP violation in SM?



Why is it important?

Flavor sector of the Standard Model (SM)

B Yukawa couplings are the only source of both the flavour structures

and the CP violating phenomena.

B Structure of Yukawa couplings: hierarchical or democratic?

Can't tell: SM phenomenology the same in both cases.
But in SUSY extensions, new non-SM interactions can distinguish.

B Absolute values and ratios of quark masses are helpful.

B Ppractical issues: fundamental parameters enter all

predictions of relevance to phenomenology.




CKM unitarity triangle analysis

& The main constraints:
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CKM unitarity triangle analysis by UTfit (Bayesian)
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CKM unitarity triangle analysis by CKM-fitter (frequentist)
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Phenomenologically interesting

CP violation studies and the search for physics beyond Standard Model:

o | Vs K — v, K — wly
o |V Dy — 4v, D — Kflv
D — K*v, D, — ¢lv
o |Ved| D — v, D — mlv
D — plv, D, — K™ gy
o |V B, — fv, B — DW{y
B, — D™ gy
o Vil B — v, B — mly
B — plv, B, — K®) gy
o |Vis/Vidl B — K*y/B — py

o K9— KO & B°— BY mixing amplitudes



Flavor physics at LHC

# Check UT through B.-modes

¢ B, — [Dg*), K™, Bltv (and excitations)

¢ Bs— J/Yo
¢ many non-leptonic modes (esp. )

# FCNC
¢ B, — ¢7, B, — K"y
¢ B, — B, mixing
¢ B, — putu
BR™ = 3.4(5) x 107° Vs. BR®™¥x tan® 3
¢ B.— KK

& B. modes

¢ LHCb =10° B.’s/year — new physics scenarios



Flavor physics at LHC

#® Check UT through B,-modes

¢ B, — [DY, K™, B
¢ B, — J/v

¢ many non-leptonic mog

& FCNC

¢ B, — ¢y, B, — K*v
¢ B, — B, mixing

CMSSM, p>0 CMSSM, p>0

") s .: 'tanB= 10 S 'tanB= 10
¢ B, — utu” P stanP=50,A,=0 . *tanf =350, A, =0
. _ B & % E - ‘C‘ \\
BR™ =34(5)x 107"V ¢ ——— o : N -
2 o [N stanf=50,A,=m,, A o | *tanf=30,A,=m,,
¢ B, » KK i
& B. modes

¢ LHCb =10° B.’s/year — n



How do hadrons arise from QCD?

& Very simple lagrangian
1 a a — A aga
,CQ(';D = ZFIWFMV -+ E q {";’u ((’)u -+ gAut ) -+ mq} q

g=u,d,s,...

yet amazingly rich and complex structure of strongly interacting matter.

Q Atoms, molecules, solids,...

¢ Constituents can be removed

¢ Exchanged boson generating interactions subsumable into static potential
(v — coulombic, 7 — N-N potential)

¢ most of mass from fermion constituents
# Hadrons (mesons, baryons)

¢ Quarks are confined

¢ Gluons are essential degrees of freedom; they carry about a half of the
nucleon momentum; non-perturbative topological excitations

¢ most of mass generated by interactions



018@9(E)8(")-..10) = 5 [ DI, B, AJ8(@)9(a)(a")-.c %o
with Z = / D[@b,@, Al £iSQCD

— Minkowski to Euclidean space e*° = e efc.
— Functional integral handled by MC on discrete space-time

— Suitable choice of ¢(x)¢d(x’)... — desired physics info
In practice we are interested in two- and
three-point functions



Cy(t) = / dBze < 0|®(Z,t)®'(0,0)|0 >
®(x)- interpolating operator for the hadron state (h) which we want to study

Cit) = Y [ dze™0/e@,0ln) (nle! G,0/0

/ e (0|B(Z, )| h) (| (G, 0)0) + ...

L -ime (0/2(@ 0)|h)|2E_ Fo. =

2F =+/D%+m?

— Minkowski to Euclidean space: 1Et — Et
— Fit Cy(t) to extract matrix element and hadron mass (|p] = 0)

— eg. ® = uy,Ys55 = my and (0|uy,yss| K) = mx fx



Cs(t,tz) = / d*zd*ye’ PN (0|@' (Z,t.) O(7, 1) @' (0, 0) 0)
e—Et g—E'(t=—t) o
~ S (012'(0,0) h2(5)) X

(ha()|O(0,0)| by (B + @) (1 (B + )| @7 (0, 0)[0)

E = \/ﬁ2+m%2 and E = \/(15'+(j)2+m,2,'1

— Combining with 2-pt functions = extract the transition matrix elements

— Matrix elements of AF' = 2 operators
— eg. se:t|151 =1q]=0
® = dyss, P = 5vsd, and O = (§d)V_A(§d)V_A
= (I_{Olg')’u(l — 5)d57y,(1 — 75)d|K°) = %f?{m%{BK



1. Lattice actions for QCD

Minkowski space-time, continuum e Euclidean space-time, discretised

Lattice spacing a, a '~ Ayy, z,=mn,a
Finite volume L®.7, N,=L/a, N,=T/a

L+ + = + o+
7o
+ + o+ o+ e ot
Ns
+ =<+ + + + + +

"+ + + + + 4+ o+ o+

(anti)quarks: (z), ¥(x) lattice sites
gluons: U,(z) = e*4:(=) € SU(3) links
field tensor: P, (z) = Uyu(2)U,(z + af)U[(z + a?)Uj(z) “plaquettes”



In lattice QCD the (non-Abelian) gauge field is represented by an SU(3) matrix:
Uu.(z) € SU(3), (link variable)
Gauge transformation:
Uu(z) — g(@)Uu(z)g(z + )™,  g(x), g(z + app) € SU(3)

Let AS°™(z) be a given gauge potential in the continuum:

cont ]_
__aA (x) cont — 1 - _
Uu(z) = e*» : AP (x) = il_r,r%) a(U“(x) 1)

Formulate expressions for the QCD action in terms of link variables and fermionic
fields

Lattice action: S[U, ¥, = Sg[U] + Sp[U, ¥, Y]



Wilson “plaquette” action for Yang-Mills theory [Wilson 1974]

SclU] = ﬂz Z (1—2ReTrP,,(z)), B=6/g5, (gauge invariant)

r p<v

Pu(z) = Uu(z)U,(z + aﬁ)UZ(-T + ad)U}(z)

For small lattice spacings:

1

SG[U] ? _29(2)

/ & Tr [Fo (@) Fo(@)] + O(a)

Proof: insert U, (z) = e**(*) into P,, and Taylor-expand in a.

N.B. Discretisation not unique!



Gauge Action Choice

» The standard Wilson action:

Sp=SReTr (1= ])

» The Symanzik improved action.

' e o e o o 4
Sp=ReTr [ep (1= ] 1) 4201 (1] | )+
¢y, ¢1 and ¢y chosen to cancel the O(a?) error at one loop.

» RG-improved

Sy = FReTr [(1—8ex) (1-] 1) +e1 (1
» ¢ = —0.331 lwasaki

» c¢; = —1.4067 DBW2 [de Forcrand 1999 |

/S
Co\ 1— '_,'
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Glueball interpolating operators

£ szjfj

[LZF{:’?? 77

G
uﬁ

e {01,...,On}:

e contamination of higher spin states;

‘ +4
_4_/‘;,7 e.g. 07" can mix with 4

L s
e Matrix correlators:

Cij(zo) = 2 (0i(z)0;(0))

basis of interpolating operators for given irrep. of the hypercubic group

— Recover a given spin-parity in the continuum limit



Glueball spectrum in quenched QCD
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[Chen et al., hep-lat/0510074]

-

Mg+ = 1710(50)(80) MeV,  my-+ = 2390(30)(120) MeV

M-+ = 2560(35)(120) MeV

e No effects due to dynamical quarks or glueball-meson mixing

Mg (GeV)



Fermionic part:

e Discretised version of the covariant derivative:

1
V() = - (U(@)b(e + ap) - ¥(z))
| 1
V(@) = ~(¥(e) - Uf(z — ap)(z — apt))
e “Naive” discretisation of fermionic part Sy :

1 x
Dhaive + myf = 5"/# (VM + vu) + my

~ .1 .
Diaive(p) = Y sin(ap,) = iyupu + O(a?) (free theory)

— Bnaive(p) vanishes for p, = 0,7/a
— produces 2% = 16 poles in fermion propagator of flavour f

— 16-fold degeneracy of fermion spectrum: Fermion doubling problem



Fermionic discretisations:

a. Wilson fermions

b. Staggered (Kogut-Susskind) fermions
c. Overlap/Domain Wall fermions

d. “Perfect” /Fixed point actions

c.+d.: Ginsparg-Wilson fermions

[Wilson 1974/75]

[Kogut+Susskind 1975]

[Kaplan '92, Furman-+Shamir '96, Neuberger '98]

[Hasenfratz+Niedermaier '93/°98]

[Ginsparg+Wilson 1982, Liischer 1998]



Wilson fermions

e Add a term to D, .ive Which formally vanishes as a — 0:

1 | *
Dy +my = > (Vu+V3) +arV,V, +my

~ 1 2
Dy (p) = i’yﬂz sin(ap#)—i—% sin” (%) (free theory)

= Mass of doubler states receives contribution o r/a: pushed to cutoff scale

—) Complete lifting of degeneracy

—( Explicit breaking of chiral symmetry:

even for m; = 0 the action is no longer invariant under

¢(m) —> ez’a"mw(m), a(m) — E(m)e’ia‘m

Mostly acceptable, but makes things more complicated



Staggered (Kogut-Susskind) fermions

e Reduce d.o.f. by distributing single spinor components over corners of hypercub:

@ + + k3

+ - + - +

* +* b A *
- 2a -

L 4 E +

+ + + B

‘—( Only partial lifting of degeneracy:

16 — 4
= 4 "tastes” per physical flavour

e Flavour symmetry broken:
gluons mix “tastes”

:—) Remnant of chiral symmetry:

global U(1) ® U(1)



Chiral Symmetry on the Lattice
e Lattice regularisation: incompatible with chiral symmetry?

Either: fermion doubling problem
Or : explicit chiral symmetry breaking: {v5,D} #0

[Nielsen-+Ninomiya 1979]

e Chiral symmetry at non-zero lattice spacing realised if
[Ginsparg & Wilson 1982, Lischer 1998]

"/5D T D"5 . aD75D

e Explicit construction: Neuberger-Dirac operator [Neuberger 1996

DN=1{1— a }, A=1—aDw

a VATA

D, : massless Wilson-Dirac operator



Sr[U, ¥, 9] = a* 2@(:1:) [Dn](z) — No fermion doublers!

e Invariance under infinitesimal chiral transformations:
v — Y+ edy, d=y5(1— %aD)w
b — P+ 6Pe, 69 =(1—3aD)vs

e Dy satisfies the Atiyah-Singer index theorem:
[Hasenfratz, Laliena & Niedermayer 1998]

index(Dy) = a® Z %Tr (vsDn) =n_ —ny

— Dy exhibits [n_ — n, | exact zero modes

e But: numerical implementation of Dy expensive



Domain Wall Fermions

//
» Domain Wall Fermions preserve flavour

q(L) q(R) symmetry and have greatly reduced chi-
ral symmetry breaking.

g » at the expense adding a extra, fifth,
A dimension.

mf

» The nearest neighbour derivative in the 5th dimension distinguishes left- and right-
handed fermions

| _ l s :
Dpwr = ~Vug (Vﬂ + Vu-) + QV# V, + M5 4d piece
+Prds — PRrOs  5d piece
1 -1 1 0 0 V1
s = 4 case: o | Y2 | _ 110 —-11 0 )
>l %3] as| 0 0 -1 1 V3

by 0 0 0 -1/ \ o



Domain Wall Fermions

» Define 4d quark fields on the wall

gz = PrVz 0+ PrY; 1,1
g(L) q(R)
—.L L » Couple the two walls with a mass term

mfqq

» For finite Lg chiral symmetry is broken, leading to an additive renormalisation of the
mass
mf — Mf + Myes
plus mixing between operators in different chiral multiplets
» Mres — 0 as Lg — 00 ; The cost in computer time o< L

» Need small 7. (few MeV) for reasonable L. (O(10))



Continuum limit

Q) = () +0(a?), peN, lattice artefacts

fermion discretisation e Classical continuum limit: o — 0
Improved Wilson O(a,a), O(a?) e QFT: adjust the bare parameters as
Staggered 0(a?) cutoff is removed, whilst keeping
DWF, Neuberger 0(a?) “constant physics”
180 — 1 RERE e al= (bogg)_bl/zba e~1/2b005 .
170 4
;: 60 || TR - - Continuum limit: B =6/g?
< 150 |- N E a—0 & o
400 o0 0001 0006 0008 001 e Perform simulations at several values

a? [fm?]

of 3 and extrapolate to a = 0.



Work of various collaborations

differs mainly in the choice of
fermion action Sg:

Socp = [ d*r Lgcp,

SQC]_) — SC+ SF

Sg Chiral Symmetry | Flavor Symmetry Simulation
Overlap Exact OK Very Expensive
Domain Wall Residual Mass OK Expensive
Wilson /Clover To O(a?) OK Fast
Twisted Mass To O(a?) Broken Fast
4 Staggered % U)xu(1) ? Fast”

Valence quarks

Helps

Various gauge
actions S¢g

to get systematic errors

under control

+ No advantage
over Wilson

All symmetries (chiral & flavor) are supposed

to be recovered in the continuum limit




Improved staggered quarks

e numerically more efficient than Wilson fermions

but: 4-fold degeneracy of fermion spectrum:

4 “tastes’ per flavour

taste symmetry violations at O(a?) can be reduced — “improved"

— Take fractional powers of fermion determinant:

2 + 1 light flavours:

e Does this correspond to a
local field theory?

e Does this lead to the
correct continuum limit?

— under debate . . .

09 1 1.1

fx

fw
IM=
2Mp,
v(1P
T(1D
T(2P
T(3S
T(1P

LQCD/Exp't (ns = 0)

My
My
185)
185)
15)
15)
15)

LQCD/Exp't (ny = 3)

“fourth root trick”

B S L S T

09 1 1.1

{det(Dstag + mu,d)}1/2 X {det(Dstag -+ ms)}1/4 e—SG

[Davies et al.,

hep-lat /0304(



Before continuing...

Lattice 2005: “Is staggered QCD really QCD or just a model of
QCcD?-S.Dur

Lattice 2006: “Not bad, just ugly™-S.Sharpe

Bernard et al 2006: The fourth root trick corresponds to a non-local theory
ata # 0, but argue that the non-local behavior is likely to go away in the

continuum limit.”
So what do you do about the non-locality and renormalisability?

SChPT is used to extract f. and fx: fit contains more than 50
parameters!

renormalisation is only perturbative (c.f. lesson from m,!)

MILC and HPQCD made a great effort to make the best out of
SQCD, BUT the use of other actions is indispensable!



Strong coupling constant Benchmark calculation

— Compute a2 (a) S: 'lattice’ scheme N;=0,2,3

~ Convert a8(a) to aM5(p), 2> 5GeV? Af\?s’ Af;)s, Afmj)s

Obtain higher A's by 3-loop matching :

7S 11
S MS MS 1
= ol =p(me) = (¥, =5 (me) — 75 &1 (R =g (M) + - Asrs
7S 7S 11 55 5
= )R =5 (M) = (R =y (M) — =5 QTR =gy (M) >+ - AEVI)S
f I T2 S




o, from heavy quarkonia

_ 3 :
e Definition: ay(q) = ~Te2 7> V(q) (heavy quark potential)
i
+ 4+ + + + 4+ o+ o+
+ . o (an) 0.4 e—V(T‘)t
|

* j + r=na, t =ma
+ A -
b o+ 4 4 o+ o+ a4 n-m : area of Wilson loop

e Perturbative expansion:

—In (Wam) = chav(q) {1+ cZav(g") + cihav(g")? + O(a}) }

cg‘?, gzl) known in perturbation theory

g* : “characteristic’ momentum scale



e Conversion to MS-scheme:

_5 2
ogrs(e /6(1) = ay(q) + ;Otv(q)2 T
e (Calibration:
(aq)
q|GeV| = GeV
[ ] (aA‘lrS—IP) lb IP[ ]

(radial (15 — 285) or orbital (1.5 — 1P) splitting in Y-system)

e Matching & running: purely perturbative

Quark thresholds, e.g. for Ny = 3 dynamical flavours:

3 - 4
0L(7.5GeV) — s (m,) = a%(mc)




this?)

Results (can we learn from
400 ] i I i | l
350 |- -

;‘ 300 + i _

v :

= 250 |- % -
g | I
= 200 - -
[ @ ® ALPHA N
150 |- ® QCDSF Exp (BBG) -
: ® HPQCD = Exp (Bethke)
100 I | | | | | |
0 1 2 3 4 5



Light quark masses

0, A" = (my + my)P

e Calculate the two-point correlation function

l 8
Zp2¢ {exp(—mpt) + exp(—mp(L: — 1))} .
Qmp

(0| P'(t)P°7(0)|0) =

0= L; 0= L,
Qt Ot

e mp is the mass of the pseudoscalar meson.

e The superscripts [ and s stand for local and smeared respectively.

e The Z3*’s are the matrix elements (0| P"*(0)|P).



(0| P'(t)P*T(0)]|0) =

e Calculate also

(0] AL(t)P*1(0)|0) =

e Thus we obtain

6,1 A¥ = 2qu

I 8
CrCh {exp(—mpt) + exp(—mp(L: — 1))} .
2mp

l s
CQ:nip {exp(—mpt) — exp(—mp(L: — 1))} .

(0) AWI _ mpCly

Mg 20k

e Now we would like the mass in some standard renormalization scheme,
and the axial current and pseudoscalar density are both multiplicatively
renormalizable. The renormalization constants can be fixed and we obtain

the masses.



Non-Perturbative Renormalization

e Lattice computations are of bare quantities with @' as the ultraviolet
cut-off.

e As an example consider a local operator, such as the pseudoscalar
density 117 .
In lattice simulations we compute

(f105(a)l?)

whereas we would like to know

in some standard renormalization scheme K.

The long distance physics is the same in both.

e For sufficiently large scale, a~' and i > Aqcp, the relation between

these two matrix elements can be determined in perturbation theory, but
the coefficients in Lattice PT are frequently large.



e It is possible to perform the renormalization non-pertubatively,
eliminating the need for lattice perturbation theory.

For example (there are more sophisticated schemes), let us define the
renormalized operator O as bein% the one whose matrix element between
quark states, at some scale p? = p* and in some gauge (the Landau gauge
say) is the tree-level one. We compute

(p|OB(a)lp) =

and determine the renormalization constant Zo(au) by requiring that

Zo(ap) (p|Ogs(a)|p),2—-,2 = tree level value.
e The renormalized operator

Ox' "™ (u) = Zo(ap) Os(a)

is independent of the regularization (RI) and can be used in hadronic
matrix elements.



Quark masses

mg
140 ] T T L] ' L 1 T T I T L4 LS LS L T T L]
- = SPQCDR NPRen
B ® QCDSF NPRen .
= ¢ JLQCD PRen -
v 120 4 CPPACS PRen -
= v HPQCD PRen 2+1-
~ .
S
8 100 . :
2 »
E :
80 —
l 1 L L A l 4 1 1 1 l L L 4 4 l 1 1 1 L |
0 0.005 0.01 0.015
a? [fm?]

mM5 (2 GeV) = 118(5) MeV

0.02

(2GeV) [MeV]

uS
my

140

120

100

80

T L 1 T T l T L4 L ] Ll Ll Ll L] L4 1 1 Ll
- = SPQCDR NPRen :
- ® QCDSF NPRen .
- v ALPHA NPRen 1
* JLQCD PRen -
4 (CPPACS PRen .
Pl i ' ' ' l A A L A l ' 1 L L l L A A ' |
0 0.005 0.01 0.015 0.02
a? [fm?]

A reliable calculation requires

— Nonperturbative renormalization

— Continuum extrapolation



Recent Compilation of (Unquenched) Lattice Results

Reference Mg m
HPQCD, MILC and UKQCD | 76+3+7MeV | 28+.1+.3MeV
HPQCD, MILC and UKQCD
Update including 2-loop Z’s 86t3+4MeV | 3.2+.1+x2MeV ™
CP-PACS & JLQCD (K-input) | 80.4+1.9MeV 3.05+.06 MeV
CP-PACS & JLQCD (®-input) | 89.3x2.9MeV 3.04+.06 MeV
SPQR (VWI) 1116 MeV 4.8 +.5MeV
SPQR (AWI) 103+ 9 MeV 4.5+ .5MeV
QCDSF & UKQCD 119+5+8MeV | 47+.2+.3MeV
Alpha 97 £22 MeV —
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7 qu ki 0(q2)

mi — Mz

(x Blsal Kor)) = (o + - 07E )”F+(q2)+ M




FE-7((0) =2
B CVC — normalisation in SU(3) limit: F'(0) = 1 ® AGT O[(m, — m.,)?]
B CchPTto O(p®): FE'=7 (0) = 1 + fou + fus AND fru = —0.0227
B f =7 : high precision possible from double ratio

(7| 3vou|K) (K |ayys|T) _ (mg + m,)?

(K|37vps| K) (m|uyou|m) dm mg

(Fo(ghax)) :

B Pjus one momentum injection to e.g. pion — to F'(0)

B Mass dependence (ChPT, QChPT and PQChPT formulas available)

B Results:
F'(0) = 0.960(5)(7) SPQcdR (2004)
- F'(0) = 0.962(6)(9) Fermilab (2005)
- F'(0) = 0.962(6) JLQCD (2005)
- F'(0) = 0.955(12) RBC (2006)

—mn1Q/A4



I
Y\ Cirigliano et al. 2005
I
I
'S Jamin et al. 2004
]
I
4 Bijnens & Talavera 2003
I
]
. ! Leutwyler & Roos 1984
_______________________ e T T U W™ . PR T P Ao 0 e e By T A s S L PR A
]
N=0 e E Becirevic et al. 2004
I
I
N f=2 — ! JLQCD 2005
I
N=2 —l—f— RBC 2006
]
N=2+1 —— E MILC+HPQCD 2004
I
N=2+1 - E RBC/UKQCD 2006
||||||||1||i|1||||1| L L1 1
094 0.96 }{).98 1 1.02 1.04
T

f%(0)

@ tension between yPT and lattice?
— need to reduce error bars

@ seems independent of N;

@ in many cases Leutwyler & Roos

(1984!) is still used to determine
|V 5| (cf. PDG)



on K'— K% mixing
O, ()
ex ~ (KHE 2 K®) = C(p) - (K°| 57u(1 — 75)d 57,(1 — 75)d |K°)

B C(u) info on SD dynamics: perturbation theory

® |ow energy QCD dynamics
_ 8 .
(KIQU)IKY) = 3 fmi B (1)

B AD to 2-loops in M_S RI/MOM and SF schemes

B NPR essential but difficult with Wilson quarks (with staggered NPR impossible while per-
turb.corrs. huge — HPQCD-2006 : By = 0.62(2)(4)(13))

e



B g with Wilson quarks - bad— better

C-( Wilson term explicitely breaks chiral symmetry: O.=VxV + Ax A
CP®S (s < d) symmetry, but no chirality — ad- 0,=VxV — Ax A
ditive renormalisation. Mixing with 4 other parity 0,=8x8 — PxP
even operators ...spent years computing Z;;’'s and 0,=5Sx8 + PxP
A,;'s in R/IMOM) 0,=TxT

0. (1) = Z.(ap) {0._ (@)+ ) Ax(a)()h(a)} (8A/8p = 0)
k=2

» spurious mixing in PV sector absent

» Ward Identity on the m.e.of the PV operator leads to the m.e. of the PC one. Rotation
around the 3" axis in the isospace:

ou = U5 d0d = —d’}f5 (mu =My = m)

me Y (Zt,) P& t:) Ovarav(0) P(§,t,)) = 20} _P(Z,t:) Ovv+4a(0) P(@,t,))

5ays 7tz f,ﬁ - n.21/4



Why tmQCD?

Consider the continuum action of a doublet of massless quarks

5= [ d'z p@Omu(a)
The massless action is symmetric under chiral transformations

Y = exp(iwiysT"/2)¢

—)
— ¢’ = Yexp(iwiysT*/2)

< &

When introducing a quark mass term the choices ¥ or

V'Y = PexpiwiysT) Y = cos(wa) Y + isin(wa)ul PysT Y

are equivalent!

(wa denotes the module of (wl.w? . w3) and 1% = w2 /wa is a unit vector)



Why tmQCD?

e The choice of a mass term 1) is a mere convention; in general one may pick any
other direction in chiral flavour space

e The form of symmetry transformations depends on this choice:

— by definition,the flavour (isospin) symmetry leaves the mass term invariant:

¥ —  exp(—iw}ysm*/2) exp(iwy"/2) exp(iw vs7/2) ¢

b — 9 exp(iwiysT®/2) exp(—iw? " /2) exp(—iw§Ys7¢/2)

— similarly for parity:

Y(z) — Yoexp(iwprysT") ¥(zo, —X), @E(a:) — 1;(1170, —x) exp(iwy¥57) Y0



Twisted Mass Lattice QCD

Lattice action for a doublet 9 of mass degenerate light Wilson quarks quarks (Aoki '84)

Sy =a* Z P(x) (Dw + mo + ipgysT°) ()

Dw : Wilson-Dirac operator with /without Sheikholeslami-Wohlert (clover) term

[q : bare twisted mass parameter

Properties:

e regularisation of QCD with N; = 2 mass degenerate quark flavours (see below)



® 4q # 0 = no unphysical zero modes:

det (Dw + mo + Ly YsT 3)
— det [ 75 (Dw + mg) + ipyg 0
0 ’}’5(Dw T Tng) — ’iuq

= det ([va + mo)]T[D\V + mo] + #g) >0

e positive and selfadjoint transfer matrix provided p, is real and |k| < 1/6

(k = (2amo +8) 1) = unitarity
e flavour symmetry reduced to U(1) with generator 73/2

e symmetries: C, axis permutations, reflections with flavour exchange, e.g.

Y(z) — ’Yo’fl?ﬁ(ﬂfo, —X), Y(z) — 15(5130, —x)’YoT1



Equivalence between tmQCD and QCD

Classical continuum limit of twisted mass lattice QCD:

Perform a global chiral (non-singlet) rotation of the fields:

3

v = R(a)Y, Y =1vR(a), R(a)=exp (z'a'ys%) :

For tan @ = pq/m the action reads:

55

d;lwl

i @+ @), M= fmr

¥ exp(iaysT )Y = cos(a) + isin(a)ysT Y

corresponds to w$ = ad>? in the previous discussion.



This is where tmQCD becomes useful (ETMC project)

S = Z ) (Dw + my + ipgysms) ¥(z) + 5 (Dw + my) s] , v = (ud)? My

is invariant under: v — exp(iays7s/2)1, 1 — ¥ exp(ioysT/2) for tana = pg/my

» Axial rotation of Oy, 44 leads to
<K0|OVA+AV|KO>?1;£{320 = ( |OVV+A4|KO>t£nQ(D = Z(K0|O |K )Q(D

» Important advantage of tmQCD : no exceptional configurations

det[Dy + m, + ipyysms) = det(Dw + my)(Dw +m,)" + /.Lf,) >0

= getting closer to the chiral limit.

» This year Alpha published results from “multi-a" quenched study with NPR (SF):
(a) consistent with Overlap results [B1/"2%(2GeV) = 0.58(3)]
(b) raw results consistent with SPQcdR but better accuracy!
(c) way to go unquenched!



Two comments though...

Small quark mass region might be dangerous due to LtmQCD peculiarity!
Clover term might save the day...

0.12 L4 v L ' Al L v ' L4 v L) l’

0.10 |

af

0.08 |

Non-twisted Clover
——Mtm-Wilson, m"™™" (Ref. [13])

=& -Mtm-Wilson, m™

0.06 |

-- @ - Mtm-Clover, m”

—— Mtm-Clover, m

004 LL. . . v . . U
0.00 0.02 0.04 0.06 0.08




and for every action... (ChPT in finite volume)

Recently derived standard ChPT expressions in the finite and infinite volume

Be(00)® 1 [mi(md +md) , | m2(Tmd, —m?)

-~ 1 4m?2 1 | ™ log m?
Btree 2(4’R'f)2 m%{ 0g m + 4Mmy log My + m%{ 0og m,]
Bg(L) ™® Z mi +m;  2mi N Tm% — m?

By f 2L3 mxwv w?{ m%{‘*’n

wh=mb+q° (P=mK,n);§=%i @ € Z°), Iset Ay = 1GeV

& Deviation from linearity is NOT evidence
06 " for the presence of chiral logs.
Eosr7- T
m¥ | & Smaller the mass, the volume artefacts
= 04 — - - L=15fm are more pronounced (fake logs & LEC's)
~ — — L=20fm
S T - L=2.5fm
= i L ] & Large physical volumes necessary for
m“ 0.2 0 - 0'_2‘ o 0’ 4‘ 06 0.8 this expansion to apply
- | g
r=m q/ms ,
& These effects need to be isolated




= FV corrections

B () Bk (L)
Diree = 1+ log,, +Cmy, —= =1+log; +Cm,
K K
. ABy
= B (L) = Bg(o0) (1 —log,. +1og;) i.e. —————=log; —log,
By (o0)
AB_ /B
K K m— ChPT
- ™ ' QChPT
| PQCKPT (1, =1)
| PQCKPT (1, =0.5) |
02+ — = PQCHPT (r_=02)
& Similar formulas for m, f., fx agree
00 0.0 with general Luscher formula and provide
further exp. corrections!
-02 -02 ,
L=1.5 fm & Assymptotics:
| ABx _ 3mj +m?
02 - | \ 02 Be 9 mZ
\ \ K m K
. \
00 == PSS 0.0 y (mr) 2 em_L
~02 | .02 f (27?me)3""2
=2.0 fm L=2.5 fm
(; 02 0:4 0..6 A 6 0..2 0;4 0;6 ‘
r r — n OR/AR



Lattice 2007, JLQCD : Unquenched overlap (Nf=2)
Renormalisation multiplicative & non-perturbatively!

© B,

Kaon bag parameter

- Nonperturbative renorm. with RI-MOM scheme

- NLO of PQChPT
Nf=2, a=0.12fm, preliminary result:

I;,\‘_I\-(sz(:(.\') = ().533 (T)Nhll

Talk by N.Yamada (Thu,pm)

(NLO ChPT + quadratic) fit
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Computing platforms in Lattice QCD

e Commercial supercomputers:

BlueGene/L, SGI Altix, IBM-p690, Hitachi SR8000, NEC Sx6,
Fujitsu VPP700,. . .

e Custom made machines:

CP-PACS ~ 1TFlop/s 1996 Tsukuba/Hitachi
QCDOC  ~10TFlop/s 2004 CU/UKQCD/Riken/IBM
apeNEXT ~ 10TFlop/s 2005 INFN/DESY/Paris-Sud

e PC clusters + fast network:

— Mass-produced components ——  cheap
— Standard software + programming environment



Custom made machines |: apeNEXT

e Developed by INFN/DESY /Paris Sud

e Custom-designed processor
8 Flops per cycle
160 MHz = 1.3 GFlops/s (peak)

e ~ 40 — 50% efficiency for QCD code

e |nstallations:

1 rack = 512 nodes = 0.66 TFlops/s (peak)

INFN 12 racks
Bielefeld 6 racks
DESY 3 racks

Orsay 1 rack

.
paus

L]

I—

f o=
0~
n—

f) -
,X‘

\-.
.\£
.

e 0.6 €/MFlops/s (peak)



Custom made machines Il: QCDOC
e Developed by Columbia/UKQCD/Riken/IBM

e IBM PowerPC 440 core + 64-bit FPU
2 Flops per cycle, 400 MHz = 0.8 GFlops/s (peak)

e ~ 40 — 50% efficiency for QCD code

(assembly code generator)

e Installations:
1rack =1024 nodes = 0.82 TFlops/s (peak)

Edinburgh 14 racks
DOE 14 racks
Riken/BNL 13 racks
Columbia 2.4 racks

RegenSburg 0.5 racks QCDOC installation at Edinburgh

e 0.5 $/MFlops/s (peak)




PC clusters

e CPU: Intel P4 XEON, AMD Opteron, DualCore
e Node: 1 -2 CPUs, Rambus or DDR memory, local disks,. . .

e Network: Myrinet2000 (4 — 8 Gbit/s), Infiniband (10 — 20 Gbit/s) + switch
GigE (2 Gbit/s) + “mesh”

node 1 5 | I | |

— node - node node el pode [e—

= CD [T 1]
3 7 node

pd 110l nodc e node  e—"

4 8 ITlI

e Typically larger latencies, smaller bandwidths

= scalability not as good as for custom made machines



Large installations (Lattice QCD only)

Location Procs. Network  [TFlops] (peak)
Wuppertal 1024 Opteron  GigE (2d) 3.7
JLab 384 Xeon GigE (5d) 2.2
JLab 256 Xeon GigE (3d) 1.4
FNAL 520 P4 Infiniband 3.4
FNAL 256 Xeon Myrinet 1.2




