Exercises for the lecture "Théorie des jets" at the École de Gif, 2007.

1. If you have never done so before, show that $\Delta y_{i j}=y_{i}-y_{j}$, with $y_{i}=\ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$, is invariant under boosts in the z direction. It should be obvious that $\Delta \phi_{i j}$ and $p_{t i}, p_{t j}$ are also boost invariant.
2. Show that the boost-dependent k_{t} algorithm measures

$$
\begin{equation*}
d_{i j}=2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right), \quad d_{i B}=2 E_{i}^{2}\left(1-\cos \theta_{i B}\right), \tag{1}
\end{equation*}
$$

are identical to the longitudinally boost-invariant measures

$$
\begin{equation*}
d_{i j}=2 \min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2}, \quad d_{i B}=k_{t i}^{2} \tag{2}
\end{equation*}
$$

when $\theta_{i j}$ and $\theta_{i B}$ are small respectively.
3. Take the event consisting of the following particles,

$$
\begin{align*}
& p_{1}=(90,0,0 ; 90) \mathrm{GeV} \tag{3a}\\
& p_{2}=(-90.5,0,0 ; 90.5) \mathrm{GeV} \tag{3b}\\
& p_{3}=(1.2,0.5,0.0 ; 1.3) \mathrm{GeV} \tag{3c}\\
& p_{4}=(-0.7,-0.5,0.0 ; 0.9) \mathrm{GeV} \tag{3d}
\end{align*}
$$

and draw it. Given an exclusive clustering that reduces the event to two jets, how would you expect the particles to be clustered?
Consider the $e^{+} e^{-}$JADE algorithm, a sequential recombination algorithm in which the dimensionless distance measure is related to the invariant pass of the pair under consideration,

$$
\begin{equation*}
y_{i j}^{\mathrm{Jade}}=\frac{2 E_{i} E_{j}\left(1-\cos \theta_{i j}\right)}{Q^{2}} \tag{4}
\end{equation*}
$$

where Q is the total momentum in the event. If the closest pair is repeatedly clustered until only 2 pseudojets are left, what particles will appear in which jets? Is this sensible?

Now consider the $e^{+} e^{-} k_{t}$ algorithm with distance measure,

$$
\begin{equation*}
y_{i j}^{k_{t}}=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)}{Q^{2}} \tag{5}
\end{equation*}
$$

What result do you obtain for the clustering? Is this more or less sensible than the result for the JADE algorithm?
4. Suppose you have the partonic process $q \bar{q} \rightarrow Z^{\prime} \rightarrow q \bar{q}$, where the Z^{\prime} has mass M, is produced at rest in the lab, and decays perpendicularly to the beam direction.
For an inclusive jet algorithm with small radius parameter, $R \ll 1$, calculate to order α_{s} the probability of the jet energy differeng from $M / 2$ by more than an amount $E_{0} \ll M$, using the approximations outlined below:

- Simplify the probability of radiation of a soft gluon, $E \ll M$ at an angle $\theta \ll 1$ from one of the outgoing quarks as,

$$
\begin{equation*}
\frac{d P}{d E d \theta}=\frac{2 \alpha_{s} C_{F}}{\pi} \frac{1}{E \theta} . \tag{6}
\end{equation*}
$$

- Ignore radiation from the incoming quarks. Why is this legitimate?
- Use a double logarithmic approximation, in which you ignore terms that don't contain at least two large logarithms per power of α_{s}.

If you wish to maintain a fixed probability of losing energy greater than E_{0}, should R be increased or decreased as M is taken larger?

