

Frédéric Morel on behalf of C4Pi digital team

Context (1/2)

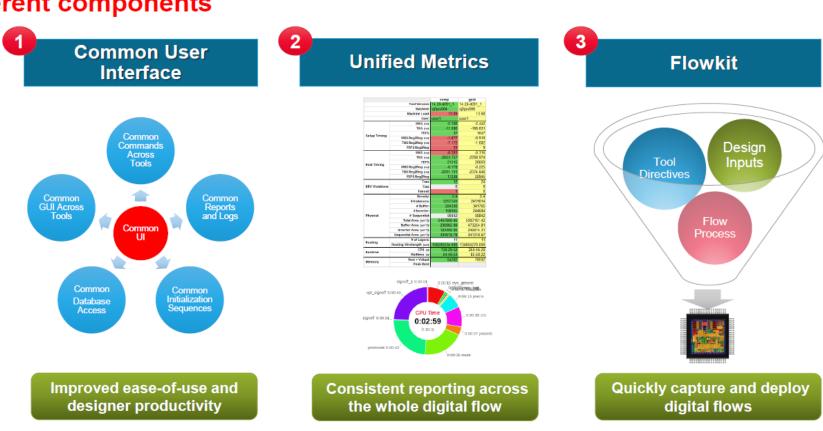
Starting point:

- ♥ The need of a digital bloc for the decoder of the DAC
- ♥ Can we try to implement the digital flow?

Final point:

- ♥ Development of small blocks with a final integration in Virtuoso
- Scripts following best practices in digital design

Purpose of this presentation:


- Use It is mainly a translation of the documentations provided by Tower
- ☼ To ease and to speed up, digital flow setup
- There are "bugs" in digital PDK to be compatible with Virtuoso
- ♥ Sorry, there are a lot of technical details

Context (2/2)

- Implementation of a small block for DAC
 - ♥ No IO have been used
 - ♥ No memories have been used
- Two kinds of methodology tested:
 - Stylus Common-UI with home made scripts based on OA libraries
 - Stylus Flowkit 2.0 methodology based on LEF libraries
 - Write flow template command:
 - □ write_flow_template -type stylus
 - □ -tools {
 - genus innovus quantus tempus voltus}
 - □ -enable feature {
 - opt_postcts_split opt_postroute_split opt_signoff
 - report_static_ir report_dynamic_ir
 - sta_glitch sta_eco }
 - □ -optional_feature
 - report_inline
 - Intermediate step saved in innovus database format (default in flowkit)
 - Final layout view saved in OA from innovus

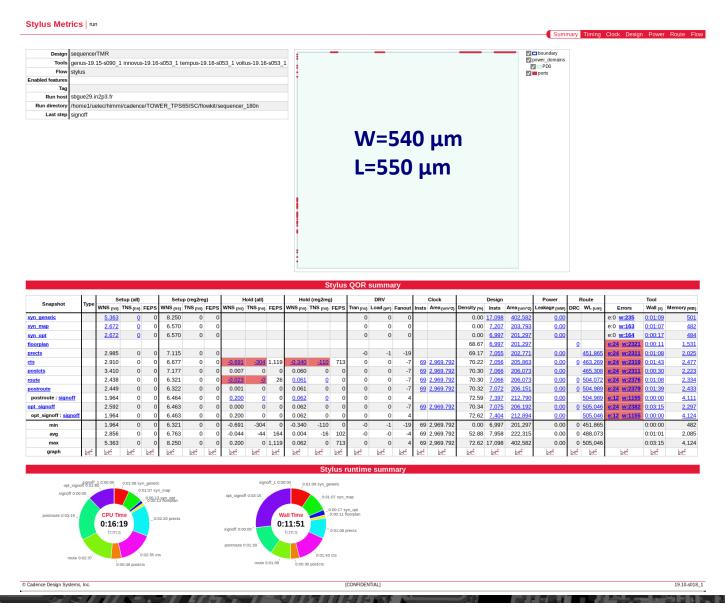
Stylus Flowkit (1/2)

Motivations - Why Stylus? 3 different components

© 2019 Cadence Design Systems, Inc. All rights reserved.

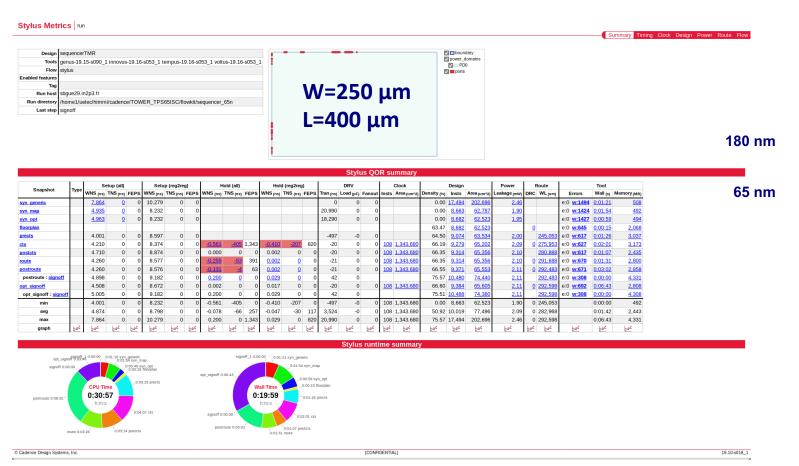
26/11/2020

Stylus Flowkit (1/2)


Overview of both flows - Stylus Flowkit (FK) Key concepts

- Code generation is performed once
 - Allows the user to make arbitrary modifications in a straightforward way
 - Simplify the means for adding user content
- No external tools are used
 - In particular, makefiles are no longer generated.
- All flow configuration and state is stored in the database
 - Includes the history of steps run
 - Easy to figure out the flow that has produced a particular result.
 - Can restart the flow from a saved DB
- Flow control and "shopping-list" using friendly YAML markup language
- Only available in Stylus Common-UI

10 © 2019 Cadence Design Systems, Inc. All rights reserved.


cādence°

MIMOSIS1 sequencer trial in 180 nm

- MIMOSIS1 is a reticule size MAPS based on ALPIDE for CBM experiment
- Fully reworked digital part to sustain higher peak hit rate without trigger
- A robust and versatile sequencer used in several sensors developed at IPHC

MIMOSIS1 sequencer trial in 65nm

Design			Power	Route
Density (%)	Insts	Area (um^2)	Leakage (mw)	DRC WL (um)
72.62	7,404	212,894	0.00	505,046
75.51	10,488	74,380	2.11	292,598

Nothing new:

- Smaller (~3 times)
- Faster (~2 times)
- Less power (60 % less, except leakage)
- Both in 4 metals, no clear impact of M1&M2 for 65 nm standard cells

Conclusion

- We have gone through all the steps of the digital flow except:
 - ♦ Scan chain
 - ♥ Macros (IO, memories, home made analog)
 - ↓ LEC with conformal (Logical Equivalence Checking)
 - ♥ No Digital on Top flow / No hierarchical flow
- We can distribute flowkit scripts as is
 - Need to be adapted to your needs
 - ♥ Could be a starting point for a common digital flow
- We digest the digital design documentation (not presented here due to NDA)
 - Ease the ramp-up
- Need to fix few variables for a common definition
 - Delay margins
 - ♥ PGV generations (area capacitance, voltage, RC corner)

₩ ..