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4 similarities between optics & general relativity

• lensing in matter with optical gradient
• lensing in tidal forces

Einstein 1919: Dann könnt’ mir halt der liebe Gott leid tun.
(Then I would have to pity the dear Lord.)

• electro-magnetic waves • gravitational waves
Brinkmann 1925, Einstein & Rosen 1937:

exact plane wave solution

• birefringence in matter with optical gradient
Fedorov 1955, Imbert 1972

• birefringence in tidal forces
2 chapels: Pirani 1957, Tulczyjew 1959

• photons • gravitons



Birefringence in isotropic matter with optical gradient

of the physical field, namely the refractive index in this case. Quite a large number of

articles following these references have, since then, been published in this rapidly evolving

subject in optics; see, e.g., [?] for an up-to-date overview. At this stage, it should be

emphasized that the SHEL, originally studied from a theoretical perspective, has lately

been observed experimentally using techniques of Weak Quantum Measurement [?, ?]

that are well adapted to wavelengths in the nanometer range. Hence the subject rests on

strong theoretical and also experimental bases.
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Figure 1: The Fedorov-Imbert e↵ect for reflection: A plane glass surface (repre-
sented by the rectangle) reflects an incoming, circularly polarized light beam. The
dashed lines indicate the orthogonal projections of incoming and reflected light
beams onto the glass surface. The dotted line (between the blobs) is the o↵set
between the reflected beam and a hypothetical reflected beam of spinless photons
(not shown in the figure). The o↵set is of the order of the wavelength of the light
beam.

It is noteworthy that the SHEL was shown to admit, rather unexpectedly, a full-

fledged description [?, ?] in terms of symplectic geometry based on the generic coadjoint

orbits of the Euclidean group E(3) with “built-in” Berry connection. This formalism was

then used to derive the equations of motion of photons in arbitrary inhomogeneous [?],

anisotropic [?] optical media, as well as polarized classical light rays in inhomogeneous

media [?]. The crux of the theory was the occurrence, via plain gravitational minimal

coupling, of a spin-curvature coupling term responsible for an anomalous velocity. It is

this specific geometrical standpoint, conveniently adapted to general relativity (GR), that

we will espouse in the present work.

With the advantage of our previous experience with SHEL, our purpose will therefore

be two-fold. We will first set up a purely geometric (and classical) formalism to describe

the motion of spinning massless particles in GR. They are governed by highly non-linear

ordinary di↵erential equations presented in Section ?? and specialized to the setting of
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Figure: The Fedorov-Imbert effect for reflection: A plane glass surface
reflects an incoming, circularly polarized light beam. The dashed lines
show the projections of the beams on the surface. The dotted line
(between the blobs) is the offset between incoming and reflected beams.
It is of the order of the wave-wength of the light.

Hosten & Kwiat, “Observation of the Spin Hall Effect of Light via
weak measurements”, Science 319 (2008) 787.

K. Bliokh, Niv, Kleinert & Hasman, “Geometrodynamics of spinning
light”, Nature Photonics 2 (2008) 748.



Birefringence in Schwarzschild’s metric (Tulczyjew)

Figure: The trajectory of a photon with positive helicity, χ = +1,
∆ϕ = scattering angle, β = angle out of geodesic plane



r0 := perihelion > r�,
λ0 := wavelength at perihelion, χ := helicity = ±1.

• Scattering angle of light ∆ϕ ∼ 4GM�/r0 (∼ 1 arc” for r0 ∼ r�)

• Angle out of geodesic plane β ∼ −χλ0/(2π r0)

• β depends on λ0 (‘rainbow effect’), but not on M.

!! The projection of the photon on the geodesic plane moves with
the speed of light c.

!! Stable numerical and perturbative solutions exist only if s⊥0 = 0.

Duval, Marsot & Schücker 2018



Upper limit from VLBI of radio-sources ‘close’ to the Sun
Harwit, Lovelace, Dennison, Jauncey & Broderick, Nature 249
1974

Abstract:
“An upper limit is determined for the difference in the deflection of
beams of orthogonally polarised radiation passing through the
Sun’s gravitational field. A null result is anticipated by present
theories of gravitation but this prediction has never been tested.”

With a baseline of 3900 km and with

λ0 = 3.75 cm, r0 = 18.8 r�,

Harwit et al. find an upper limit of

|β| < 10−3 arc”.

For the same values, general relativity with Tulczyjew’s choice
yields

β ∼ ± 3 · 10−8 arc”.



Today

Martin Harwit Feb. 2020:

GRAVITY @ VLT λ0 = 2 · 10−6 m, resolution = 10−5 arc”,

Event Horizon T λ0 = 1.5 · 10−3 m, resolution = 2 · 10−5 arc”.

Astronomical lenses?

β does not depend on M.



Birefringence in a Robertson-Walker metric

Figure: The trajectory of photons is the helix. The dashed line is the null
geodesic. The transverse spin ~s⊥e at emission time te is indicated by the
short arrow at the left.



• Rhelix(t) ∼
a(t)
ae

λe

2π
+ O

(
λe

2π ae

)2

,

• Thelix(t) ∼
a(t)
ae

λe

1 + Q
, Q(t) :=

−aa′′

a ′2 + K
, K = 0, ±1.

• The spin vector ~s rotates with the same period Thelix(t).

!! The projection of the photon on the geodesic moves with the
speed of light c (= 1). Therefore the speed of the photon on the
helix is ∼

√
2 c.

!! |~s⊥| is not conserved, but |~s⊥|
√

a ′2 + K is.



An exotic redshift formula in the Lemaître diagram
The photon is a taciturn messenger: it tells us its incoming
direction (θ, ϕ) and its period today T0. From this period we
compute the redshift,

z =
T0 − Te

Te
.

If we admit that the photon has spin, then it carries one more
information: its period of precession Thelix 0 tempting us to try

z =
Thelix 0 − Thelix e

Thelix e
.

This assumption leads to an exotic formula for the redshift,

z + 1 =
a(t0)

a(te)

1 + Q(te)

1 + Q(t0)
, Q :=

−aa′′

a ′2 + K
.

Duval, Pasquet, Schücker & Tilquin 2018



Birefringence in linearized gravitational wave

dτ2 = dt2 − (1 − σ cos[ω(t − z)]) dx2

− (1 + σ cos[ω(t − z)]) dy2 − dz2 + O(σ2)

LIGO/Virgo: ω = 2π/λGW ∼ 2π · 100 Hz

σ ∼ 10−20 ‘strain’
λphoton = 1 µm

Marsot 2019:

∆τphoton

(
1 + σ + σ

λ2
photon

λ2
GW

)
no GW GW GW

no spin spin

∼ 10−45 < σ2



3 axioms for general relativity

Rµν −
1
2 R gµν − Λ gµν = 8πG Tµν

⇓ if test particle has no spin

��m
D
dτ

d
dτ

xµ =: ��m ẍµ = 0

∆τ =

∮ √
gµν

dxµ

dp
dxν

dp
dp , (+ − −−)



Adding spin to the geodesic equation

Now add spin S [µν](τ).

ẋµ �= Pµ Einstein 1907 − 1915

Ṗµ = 0 − 1
2 Rµ

ραβSαβẋρ Mathisson 1937, Papapetrou 1951

Ṡµν = Pµẋν − Pνẋµ Dixon 1970, Souriau 1974

��⇒ PµPµ =: m2 is conserved.

If Sµν $ 0 and if ẋµ and Pµ do not vanish, the spin evolution implies:

ẋµ(τ) = γ(τ) Pµ(τ)

and we can reparametrize τ to achieve γ(τ̃) $ 1.
However, if Sµν , 0 we only have 4 + 6 equations for 4 + 4 + 6
unknowns and we must add 4 “supplementary conditions”.



2 main chapels

Pirani 1957: Sµ
νẋν = 0

• Massless particles move on geodesics, no birefringence of light.

Tulczyjew 1959: Sµ
νPν = 0

• PµPµ is conserved unless PµPµ − 1
4RµναβSµνSαβ = 0,

• Pµẋµ = 0,

• 1
2SµνSµν =: s2 is conserved.

After a 1 + 3 split, the “spin scalar” s will become s = ~s · ~p/p =: χ~
and ~s = s ~p/p + ~s⊥. Quantum Mechanics says: photons have
“helicity” χ = ±1 and |~s⊥| = ~.



Equations of motion for massless test particles with spin

ẋµ = Pµ + 2
Sµ

νRν
βρσSρσ

RαβρσSαβSρσ
Pβ

Ṗµ = −s

√
− det(Rα

βρσSρσ)

RαβρσSαβSρσ
Pµ

Ṡµν = Pµẋν − Pνẋµ Souriau 1974, Saturnini 1976

3 delicate features:
I No flat space limit

(Non-vanishing cosmological constant Λ helps. Marsot 2021)
I No zero-spin limit
I Superluminal velocities: due to the anomalous velocity ẋµ is

spacelike.


