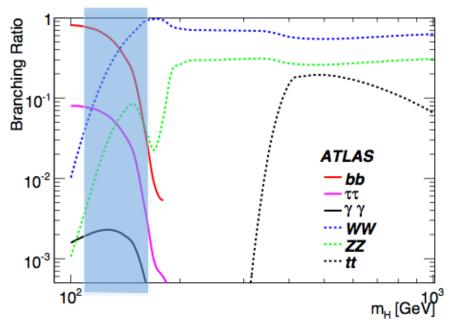
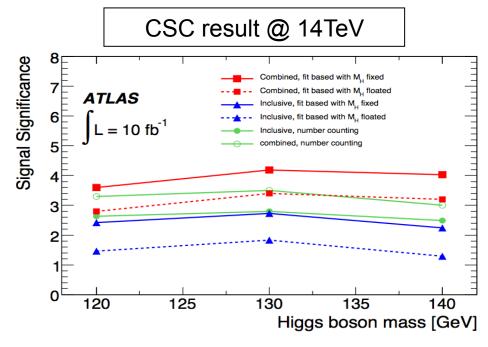
Photon-related studies @ ATLAS

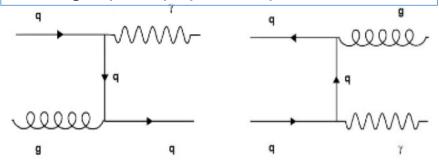

Li YUAN
IHEP, Beijing
LPNHE, Paris

Supervisors: Shan JIN(IHEP), Lydia ROOS(LPNHE)

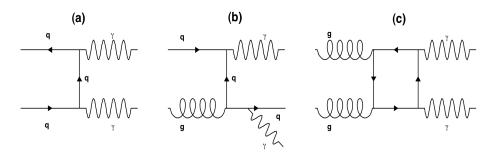
Outline


- Photon-related physics study
 - $-H \rightarrow \gamma \gamma$ analysis
 - Prompt photon production
- Photon-related performance study
 - Photon trigger efficiency measurement
 - Results from 900GeV data
- Conclusion

H→γγ analysis


 $H \rightarrow \gamma \gamma$ inclusive analysis @ 10 TeV has been performed. Result was extrapolated to 7 TeV. (not public) I was involved in this inclusive analysis, and mainly contribute to the study of signal efficiency and final fit.

- ➤ This is one of the most promising discovery channels for a SM Higgs search in low mass region.
- ➤ Simple signature.
- ➤ Very good mass resolution(~1.5GeV)



Prompt photon production

➤ Single prompt photon production:

> Double prompt photon production:

In order to get a precise measurement of photon production. It is important to know various photon efficiencies. Here I mainly talk about photon trigger efficiency measurement.

Importance:

- \triangleright Main background for $H \rightarrow \gamma \gamma$
- ➤ Prediction tests of perturbative QCD.
- ➤ Contributes significantly to the measurement of gluon distribution in hadrons.
- ➤ Use to calibrate Jet/MET objects

$$\sigma_{\gamma} = (N_{obs} - N_{bkg}) / (\alpha_{\gamma} \cdot \varepsilon_{\gamma} \cdot L)$$

$$\varepsilon_{\gamma} = \varepsilon^{ID} \cdot \varepsilon^{iso} \cdot \varepsilon^{trig}$$

 α_{ν} : detector acceptance

L: integrated luminosity of data sample

Proposed First Physics Trigger Menu 10³¹ for photon

e/gamma Primary trigger

Trigger	EF Rate*	Prescaled	Motivation
2e5_medium	1.5 ± 0.5 Hz	no	J/ψ, Y, Drell-Yan
e10_medium	15 ± 2 Hz	no	b/c, DY, Z→π
e20_loose	4 ± Hz	no	W, Z, top
em105_passHLT	<i hz<="" td=""><td>no</td><td>exotics</td></i>	no	exotics
g20_loose	4 ± Hz	no	direct photon

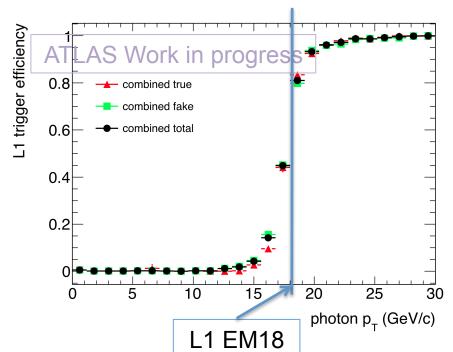
- Primary: g20_loose
- Supporting:
 - g10_loose
 - g2oi_loose
 - 2g20_loose
- Commissioning: 2g10_loose
- Back-up: g25_loose

Photon trigger efficiency measurement

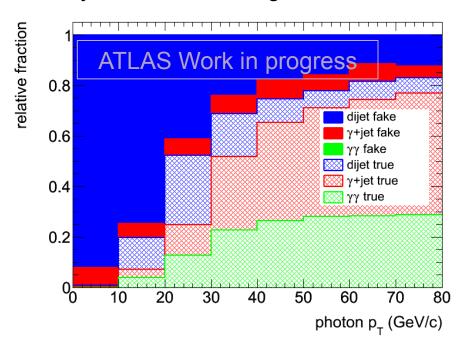
 $\varepsilon = \frac{\textit{tight selected reco } \gamma \, \textit{matching with } g20_loose \, \textit{trigger}}{}$

- Definition: $\varepsilon = \frac{1}{\text{tight selected reco } \gamma}$ marginal trigger efficiency with respect to the offline photon selection.
- Difficulty:

For the long term with high statistics, $Z \rightarrow \gamma ee$, $Z \rightarrow \gamma \mu \mu$ events could be used. But with low luminosity, no good way to select high purity photon sample.


- Possible Methods:
 - Electron to photon extrapolation
 - Select pure electron sample from Zee
 - "tag & probe" method
 - Select events with at least two offline photons passing single photon trigger
 - One photon considered as "tag" photon and the other to be "probe"
 - Bootstrap
 - select events with leading photon passing lower threshold trigger
 - Measure the photon trigger efficiency with this photon

Assumption:


low purity photon samples, $\varepsilon = w_s \varepsilon_s + w_b \varepsilon_b$ if fake/true behave the same after tight offline selection $\varepsilon_s \doteq \varepsilon_b$, $\varepsilon = \varepsilon_s = \varepsilon_b$.

example of "tag&probe" method

True/fake efficiencies are close.

Purity at the turn-on region is 20%~40%.

Efficiency for photons above 25GeV is almost 100%.

Similar agreement with MC truth also obtained at High Level triggers.

Three methods comparison electron extrapolation, "tag&probe", bootstrap

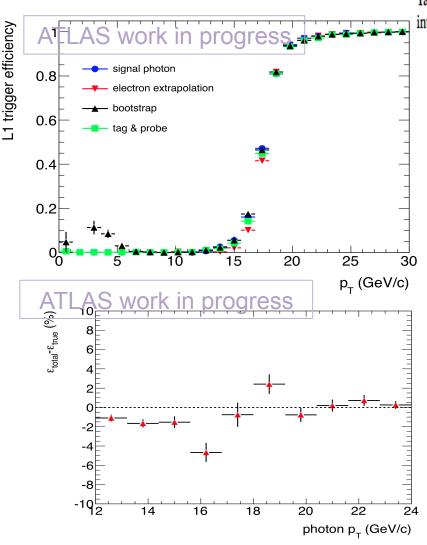


Table 31: Estimated number of photon candidates expected for each method as a function of p_T with an integrated luminosity of 20 pb⁻¹.

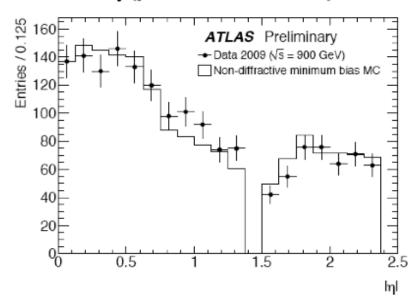
Method	Photon p_T [GeV/ c]			
	< 14	14 - 20	> 20	
tag&probe	24372 ± 387	5556±129	5489 ± 223	
bootstrap	$(44.0 \pm 0.3)10^5$	$(37.2 \pm 0.5)10^5$	$(33.4 \pm 1.0)10^5$	
extrapolation	32±7	136 ± 21	6302 ± 93	

The efficiencies from the three data-driven methods agree well with MC truth.

Bootstrap method select a sample with low purity, but can offer a high statistics. First to be tried on the data.

Extrapolation method can not offer a good check at the low luminosity.

The systematic uncertainty for the three methods at the turn-on region is at the level 2%~4% on average.

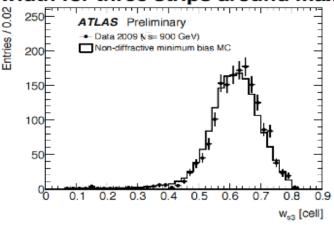

All results summarised in the internal note [ATL-COM-PHYS-2010-113]

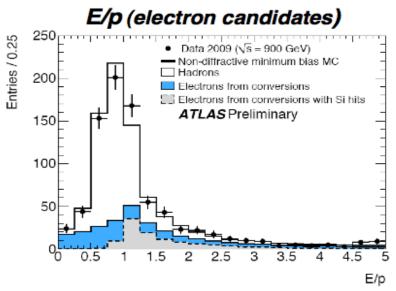
Results from 900GeV (1)

E_{τ} (photon candidates)

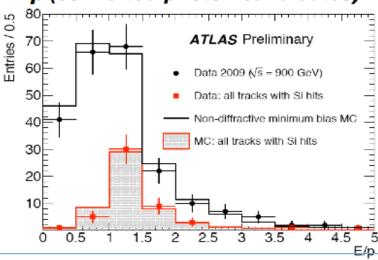
ATLAS Preliminary Data 2009 (vs = 900 GeV) Non-diffractive minimum bias Monor, and a property of the protons is H/F SH photons 10⁻² 3 4 5 6 7 8 9 10 11 12 E_T [GeV]

η (photon candidates)

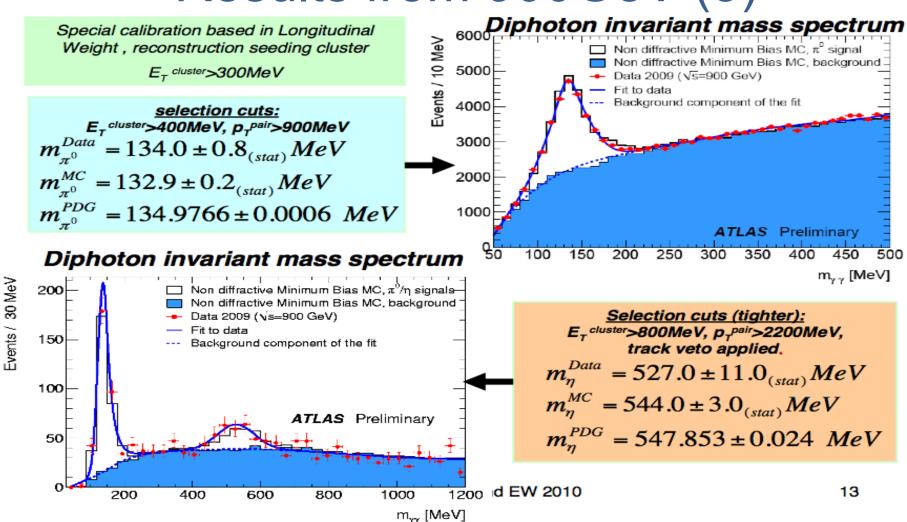

The Monte Carlo sample is sub-divided in this case into four components:


- * Approximately 71% of the candidates correspond to photon from π^0 decay.
- * An ~14% are from η , η ', ω .
- * An ~14% are from hadrons with complex decay process and particles interaction in the tracker material.
- * Only a very small fraction of ~0.7% of all photon candidates are expected to be "prompt" at these energies .

From Rencontres de Moriond EW 2010.


Results from 900GeV (2)

Shower width for three strips around maximum strip



E/p (converted photon candidates)

From Rencontres de Moriond EW 2010.

Results from 900GeV (3)

From Rencontres de Moriond EW 2010.

Conclusion

- Three methods have been developed for the photon trigger efficiency measurement. Waiting for data to test those methods.
- Results from 900GeV data has shown a nice agreement between Data/MC.
- With the 7TeV data increasing, more and more exciting results will be produced.