Top Pair Cross Section Measurement in the Semileptonic Channels in ATLAS B.Mansoulié¹, J.Schwindling¹, <u>J.Yu^{1,2}</u>, S.Chen² SPP/IRFU/CEA-Saclay, France; Nanjing University, China yujie.hep@gmail.com April 07, 2010 #### **Outline** - Introduction to $t\bar{t}$ cross section measurement with ATLAS - Method of the cross section mesurement in l+jets channels - Recent work and progress - ► Trigger efficiency measurement using top events - ▶ BTagging efficiency measurement using top events #### Part1. Introduction: $t\bar{t}$ cross section measurement • In p-p collision, top pairs are produced through gluon-gluon and quark-antiquark scattering Figure: Lowest order: gluon-gluon scattering (a) & (b), quark-quark scattering (c) • $t \to Wb$ is close to 100%, $W \to l + \nu \sim \frac{1}{3}$ and $W \to q\bar{q} \sim \frac{2}{3}$ ## Top pair branching fraction #### **Top Pair Decay Channels** | <u>c</u> s | electron+jets | muon+jets | jets | all-ha | dronic | | |----------------|----------------|-----------|----------------------|---------------|--------|--| | ūd | electro | muon | tau+ | | ironic | | | ال | еτ | μτ | \mathcal{J}^{τ} | tau+jets | | | | <u>'</u> ユ | еμ | - C | μτ | muon+jets | | | | Θ ^l | edi | еμ | еτ | electron+jets | | | | N decay | e ⁺ | μ^{+} | τ+ | ud | cs | | Semi-leptonic channels $\sim \frac{4}{9}$ Di - leptonic channels $\sim \frac{1}{9}$ Full-hadronic channels $\sim \frac{4}{9}$ - \bullet semi-leptonic: high branching ratio - ⇒ best precision - di-leptonic: very clean, low background - \Rightarrow used as a tool ← Assuming top mass 172.5 GeV, at NNLO precision • chance to measure $t\bar{t}$ cross section at different energies #### Tevatron results - Tevatron Run II, 1fb⁻¹ $p\bar{p}$ collision, $\sqrt{s} = 1.96$ TeV - Theory: $6.8\pm0.6~pb$ at NLO + threshold resummation, m_t at 175 GeV - $7.3\pm0.5(\text{stat}) \pm0.6(\text{sys})\pm0.4(\text{lum}) \ pb \text{ for CDF}$ - $7.4\pm0.5(\text{stat})\pm0.6(\text{sys})\pm0.4(\text{lum})~pb$ for D0 Figure: $t\bar{t}$ cross section changes in the function of top mass ⇒ check for top mass measurement on ATLAS # Measuring $t\bar{t}$ cross section • Counting method, determination of the cross section: $$\sigma = \frac{N_{sig}}{\mathcal{L} \times \epsilon} = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \times \epsilon}$$ - To do this, we need to understand: - ▶ The integrated luminosity of data - ► Acceptance of the detectors - ▶ Objects (electron, muon, jet) identification efficiency - ▶ Trigger efficiency for electron and muon - ► Event selection efficiency - ▶ B jet tagging efficiency - ▶ Level of backgrounds #### Event selection - Selection in $t\bar{t} \to e\nu b \; \mu\nu b, \; \mu\mu, \; ee$ - 1. Exactly 2 isolated leptons $p_{\rm T} > 20~$ GeV $(e~{\rm or}~\mu)$ - 2. Two leptons have opposite charge - 3. $|M_{ll} M_Z| > 5$ GeV $(\mu \mu, ee \text{ channels})$ - 4. $E_{\mathrm{T}}^{\mathrm{miss}} > 20~\mathrm{GeV}~(e\mu),\, E_{\mathrm{T}}^{\mathrm{miss}} > 35~\mathrm{GeV}~(\mu\mu,\,ee)$ - 5. At least 2 jets with $p_{\rm T} > 20~{ m GeV}$ - Selection in $t\bar{t} \to e\nu b \ qqb, \ t\bar{t} \to \mu\nu b \ qqb$ - 1. Exactly 1 isolated lepton $p_{\rm T} > 20~{ m GeV}~(e~{ m or}~\mu)$ - 2. $E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}$ - 3. At least 4 jets with $p_{\rm T} > 20~{\rm GeV}$ - 4. At least 3 jets with $p_T > 40$ GeV ## Part2. Trigger efficiency measurement - Usually $Z \to e^+ e^-$ and $Z \to \mu^+ \mu^-$ are used, but it needs an interpretation into $t\bar{t}$ events - We measure the trigger efficiencies (e10 and mu10) using top events - $\,\rhd\,$ Efficiencies in $t\bar{t}\to e(\mu)\nu b~qqb$ are to be estimated - $\, \triangleright \,$ Efficiencies in the dileptonic channels are the measured - $\,\triangleright\,$ Trigger efficiencies for identified isolated electrons or muons - In $t\bar{t} \to e\nu b \; \mu\nu b$, mu10 (e10) trigger is passed \Rightarrow directly measure e10 (mu10) trigger efficiency \Rightarrow Triggered not only by leptons from top, but also possibly from b jets - In $t\bar{t} \to e\nu b \ e\nu b$ and $t\bar{t} \to \mu\nu b \ \mu\nu b$, tag and probe method is used \Rightarrow Here we measure really the efficiency for one object - 10 TeV, MC@NLO + Herwig, about 7.7 fb^{-1} # Trigger efficiency in $t\bar{t} \to e(\mu)\nu b \ qqb$ | Channel | # Events($100 pb^{-1}$) | TrigEff_e10, mu10 | |---------------------------------------|---------------------------|-------------------| | $t\bar{t} \rightarrow e\nu b \ qqb$ | 594.3 ± 2.8 | $99.8 \pm 0.1\%$ | | $t\bar{t} \rightarrow \mu\nu b \ qqb$ | 719.0 ± 3.1 | <i>88.1</i> ±0.2% | Table: Electron and muon trigger efficiency in $t\bar{t} \rightarrow e(\mu)\nu b \ qqb$ - ▶ e10 trigger efficiency is very high \Leftarrow cut electron p_T at 20 GeV - ▶ About $7.7 \,\text{fb}^{-1} \, t\bar{t} \,\text{events} \Rightarrow \text{statistical uncertainty}$ - \blacktriangleright mu
10 trigger efficiency in $t\bar{t}\to e\nu b~qqb,\,t\bar{t}\to e\nu b~e\nu b\sim 10\%$ - ▶ e10 trigger efficiency in $t\bar{t} \to \mu\nu b~qqb,~t\bar{t} \to \mu\nu b~\mu\nu b \sim 3\%$ #### mu10 efficiency with $e\mu$ method | Channel | # Evt (100 pb ⁻¹) | TrigEff_mu10 | |-----------------------------------|-------------------------------|---------------------| | $t\bar{t} \to e\nu b \; \mu\nu b$ | 277.2±1.9 | 88.2±0.2% | | $t\bar{t}$ other | 41.0±0.8 | 88.3±2.0% | | single top | 11.2 ± 0.9 | $93.6 \pm 2.0\%$ | | Z + jets | 12.9 ± 1.1 | $89.1 \pm 1.8\%$ | | W + jets | 1.7 ± 0.5 | \geq 72.7% @68%cl | | diboson | $9.7 {\pm} 0.3$ | $89.1 \pm 1.1\%$ | | total bkg | 75.8 ± 2.5 | <i>89.7</i> ±0.5% | Work in Progress! - ▶ Other $t\bar{t}$ leptonic channels (eg. $t\bar{t} \to e\nu b \ \tau\nu b$) are taken as backgrounds here - ▶ Backgrounds are not biasing the measurement #### mu10 efficiency with $\mu\mu$ method | Channel | # Evt (100 pb^{-1}) | TrigEff_mu10 | |-------------------------------------|-------------------------------|--------------------| | $t\bar{t} \to \mu\nu b \; \mu\nu b$ | 149.7 ± 1.4 | 86.9±0.2% | | $t\bar{t}$ other | 24.3 ± 0.6 | $87.8 \pm 0.7\%$ | | single top | $6.3 {\pm} 0.7$ | $86.6 {\pm} 2.7\%$ | | Z + jets | 17.9 ± 1.1 | $86.4 \pm 1.8\%$ | | W + jets | $0.6 {\pm} 0.2$ | $72.2 \pm 9.1\%$ | | diboson | 5.3 ± 0.3 | $85.8 \pm 1.2\%$ | | total bkg | 54.4 ± 2.0 | $86.9 \pm 0.6\%$ | #### Work in Progress! ► We expect ϵ $(t\bar{t} \to \mu\nu b \ qqb) = 86.9\% + (1-86.9\%) \times 10\% = 88.2\%$ efficiency of mulo from $t\bar{t} \to e\nu b \ qqb$ #### mu10 efficiency as a function of η , ϕ , $p_{\rm T}$ and nJet • On the ϕ plot ATLAS feet and 8 toroid coils are seen ## Summary for trigger efficiency measurement - Using $t\bar{t}$ dileptonic channels, we can measure trigger efficiency - With 10 TeV 100 pb⁻¹ data, the estimated statistical error: | Method | $e\mu$ | $ee / \mu\mu$ | | |-------------------|--------|---------------|--| | e10 | 0.3% | 0.5% | | | mu10 | 2.0% | 2.6% | | | Work in Progress! | | | | • Need a large statistics (fb^-1) to measure efficiencies as a function of $\eta,$ $\phi,\,p_{\rm T}$ and nJet #### Part3. BTagging efficiency measurement: method Figure: Number of b tagged jets $t\bar{t} \rightarrow e\nu b \; \mu\nu b$ - Selection as trigger measurement - $t\bar{t} \rightarrow$ other di-leptons $(\tau + \tau \dots)$ are considered as signal - The number of events with n btag jets N_i depends on ϵ_b , ϵ_{nonb} and F_{ij} - We fit ϵ_b and N_{tot} , ϵ_{nonb} and F_{ij} fixed - \diamond The expected ϵ_b is 53.2% - \diamond Non-b jet mistag rate : ϵ_{nonb} 0.4% - \diamond F_{ij} is shown blow: $0.9 \pm 0.1\%$ $0.3\pm0.0\%$ $0.1 \pm 0.0\%$ $0.0\pm0.0\%$ $12.6 \pm 0.2\%$ $6.5\pm0.1\%$ $2.4\pm0.1\%$ $0.7\pm0.1\%$ $0.2\pm0.0\%$ $30.9 \pm 0.3\%$ $26.5 \pm 0.3\%$ $12.5 \pm 0.2\%$ $4.4\pm0.1\%$ $1.1\pm0.1\%$ $0.3 \pm 0.0\%$ $0.3 \pm 0.0\%$ $0.1 \pm 0.0\%$ $0.1 \pm 0.0\%$ $0.1 \pm 0.0\%$ $0.1 \pm 0.0\%$ $0.0 \pm 0.0\%$ $0.0\pm0.0\%$ $0.0\pm0.0\%$ $0.0 \pm 0.0\%$ Table: F_{ij} (fraction number of events with i jets matching b quark and j jets not) \equiv #### Fitted results of total number of events #### Work in Progress! | N_t (without bkgs) | Expected | fit N0 - N3 | fit N1 - N3 | |---|-----------------|------------------|------------------| | $t\bar{t} \rightarrow e\nu b \; \mu\nu b$ | 317.6 ± 2.4 | 312.1 ± 14.5 | 307.9 ± 20.7 | | $t ar t o e u b \ e u b$ | 96.9 ± 1.3 | 98.9 ± 12.9 | 103.7 ± 18.7 | | $t ar t o \mu u b \; \mu u b$ | 176.0 ± 1.8 | 172.8 ± 13.1 | 176.4 ± 25.5 | | N_t (with bkgs) | Expected | fit N0 - N3 | fit N1 - N3 | |---|-----------------|------------------|------------------| | $t\bar{t} \rightarrow e \nu b \; \mu \nu b$ | 317.6 ± 2.4 | 350.2 ± 14.3 | 322.2 ± 20.9 | | $t\bar{t} ightarrow e u b \ e u b$ | 96.9 ± 1.3 | 115.8 ± 12.8 | 110.8 ± 19.2 | | $t ar t o \mu u b \; \mu u b$ | 176.0 ± 1.8 | 205.4 ± 13.3 | 187.5 ± 26.0 | Table: Results for total number of events with or without backgrounds ## Fitted results of b tagging efficiency | ϵ_b (without bkgs) | Expected | fit N0 - N3 | fit N1 - N3 | |--|--------------------|------------------|--------------------| | $t\bar{t} ightarrow e u b \ \mu u b$ | $53.2 \pm 0.2\%$ | $54.3 \pm 2.4\%$ | $55.2 \pm 4.7\%$ | | $t ar t o e u b \ e u b$ | $53.2 \pm 0.4\%$ | $53.1 \pm 5.4\%$ | $51.2 \pm 7.2\%$ | | $t\bar{t} ightarrow \mu u b \; \mu u b$ | $53.4 {\pm} 0.3\%$ | $54.1 \pm 3.8\%$ | $53.8 {\pm} 7.3\%$ | | ϵ_b (with bkgs) | Expected | fit N0 - N3 | fit N1 - N3 | |---|--------------------|------------------|--------------------| | $t\bar{t} \rightarrow e \nu b \; \mu \nu b$ | $53.2 \pm 0.2\%$ | $49.8 \pm 2.2\%$ | $54.3 \pm 4.6\%$ | | $t ar t o e u b \ e u b$ | $53.2 \pm 0.4\%$ | $47.3 \pm 4.6\%$ | $50.1 \pm 7.1\%$ | | $t \bar t o \mu u b \ \mu u b$ | $53.4 {\pm} 0.3\%$ | $47.1 \pm 3.1\%$ | $52.4 {\pm} 7.2\%$ | | | | | | Work in Progress! Table: Results for ϵ_b with or without backgrounds - The ϵ_b is less affected by the background events than N_t - N_0 makes ϵ_b lower because of its high background contamination ## Systematics • Relative statistical precision (10 TeV, 100 pb^{-1}) and systematics: | Fitting: | $N_0 - N_3$ | $N_1 - N_3$ | |-------------------------------------|---------------------|--------------------| | ϵ_{nonb} 0 - 2%: | $^{+0.8}_{-1.6}\%$ | $^{+0.8}_{-2.5}\%$ | | background $\pm 100\%$: | 9.6% | 1.7% | | b-jet label(ΔR 0.2 - 0.5): | $^{+1.6}_{-2.5}\%$ | $^{+1.6}_{-3.4}\%$ | | jet energy scale $\pm 5\%$: | 0.2% | 0.2% | | b-jet energy scale $\pm 1\%$: | < 0.1% | < 0.1% | | AcerMC vs MC@NLO: | 0.2% | 0.1% | | Total: | $^{+9.8}_{-10.1}\%$ | $^{+2.5}_{-4.2}\%$ | | Statistical precision: | 4.2% | 6.8% | Work in Progress! • By fitting $N_0 - N_3$, if backgrounds are better known, systematic would be lower # Part3.2 Measurement at 7 TeV, 10 pb⁻¹ | Channels | Events | 0-tag | 1-tag | 2-tags | |---|-----------------|-------|-------|--------| | $t\bar{t} \rightarrow e\nu b \; \mu\nu b$ | 12.9 ± 0.3 | 5 | 6 | 2 | | $t ar t o e u b \ e u b$ | $3.8 {\pm} 0.2$ | 1.5 | 1.8 | 0.5 | | $t \bar t o \mu u b \; \mu u b$ | $6.6 {\pm} 0.2$ | 2.3 | 3.3 | 1 | | Total | 23.3 ± 0.4 | 8.8 | 11.1 | 3.5 | Work in Progress! • With this statistics, we cannot separate the 3 channels \Rightarrow fit the sum of the N_{tag} histograms | Channels | 0-tag | 1-tag | 2-tags | |-------------------------|-------|-------|--------| | signal | 8.8 | 11.1 | 3.5 | | t ar t o l u b q q b | 0.07 | 0.04 | 0.01 | | sigle top | 0.58 | 0.54 | 0.05 | | Z + jets | 3.20 | 0.07 | 0.00 | | W + jets | 0.18 | 0.00 | 0.00 | | Total Bkg | 4.03 | 0.65 | 0.06 | | S/B | 2.2 | 17 | 55 | Work in Progress! Work in Progress! No diboson background included yet, may be important. ## Results with backgrounds | | | Without Background | | With Background | | |--------------|----------|--------------------|-------------------|------------------|-------------------| | | Expected | N_0 - N_2 | N_1 - N_2 | N_0 - N_2 | N_1 - N_2 | | ϵ_b | 45.4% | $43.7 \pm 8.0\%$ | $46.3 \pm 15.9\%$ | $37.8 \pm 7.5\%$ | $45.0 \pm 15.4\%$ | | N_{tot} | 23.3 | $23.5 {\pm} 5.0$ | 24.0 ± 10.0 | $28.0 {\pm} 5.6$ | $25.5 {\pm} 10.5$ | Work in Progress! - Error bars = statistical error for 10 pb^{-1} - Without background: - Average values in agreement with expected ones - Statistical error of factor 2 worse when using only N₁ - N₂ (expect lower sensitivity to bkg) - Systematics due to background a factor 3 worse using N_0 N_2 _____ ## Part3.3 Measurement using semileptonic channels Figure: Number of b tagged jets $t\bar{t} \rightarrow \mu\nu b \ qqb$ - Backgrounds greater than in dileptonic - 10 TeV, 100 pb⁻¹ sample - Fit N_{tot} , ϵ_b and ϵ_c - A limit is set on ϵ_c : [0%, 40%] - The light jet mistagging rate is 0.166% - ♦ S/B much smaller than in dileptonic - \diamond Uncertainty: RMS for 100 pb⁻¹ - ♦ Fitted results, see below: | $t\bar{t} \to \mu\nu b \; \mu\nu b$ | Expected | no bkg | with bkg | |-------------------------------------|------------------|-------------------|-------------------| | N_{tot} | 1889.8 ± 5.8 | 1886.5 ± 48.7 | 2356.0 ± 57.7 | | ϵ_b (%) | 54.4 ± 0.1 | 55.9 ± 4.7 | 52.6 ± 1.8 | | ϵ_c (%) | 9.1 ± 0.1 | 8.2 ± 3.2 | 8.1 ± 2.7 | # Summary and to do list - In order to measure $t\bar{t}$ cross section, we try to look with MC the trigger and b-tagging efficiency measurement - We are eager to apply the measurement on data, but with 0.15 pb⁻¹ data, 0.024 $t\bar{t}$ is expected. So keep patient - Finish the work on b-tagging efficiency measurement - Get prepared for cross section measurement