Top Pair Cross Section Measurement in the Semileptonic Channels in ATLAS

B.Mansoulié¹, J.Schwindling¹, <u>J.Yu^{1,2}</u>, S.Chen²

SPP/IRFU/CEA-Saclay, France;
 Nanjing University, China yujie.hep@gmail.com

April 07, 2010

Outline

- Introduction to $t\bar{t}$ cross section measurement with ATLAS
- Method of the cross section mesurement in l+jets channels
- Recent work and progress
 - ► Trigger efficiency measurement using top events
 - ▶ BTagging efficiency measurement using top events

Part1. Introduction: $t\bar{t}$ cross section measurement

• In p-p collision, top pairs are produced through gluon-gluon and quark-antiquark scattering

Figure: Lowest order: gluon-gluon scattering (a) & (b), quark-quark scattering (c)

• $t \to Wb$ is close to 100%, $W \to l + \nu \sim \frac{1}{3}$ and $W \to q\bar{q} \sim \frac{2}{3}$

Top pair branching fraction

Top Pair Decay Channels

<u>c</u> s	electron+jets	muon+jets	jets	all-ha	dronic	
ūd	electro	muon	tau+		ironic	
ال	еτ	μτ	\mathcal{J}^{τ}	tau+jets		
<u>'</u> ユ	еμ	- C	μτ	muon+jets		
Θ ^l	edi	еμ	еτ	electron+jets		
N decay	e ⁺	μ^{+}	τ+	ud	cs	

Semi-leptonic channels $\sim \frac{4}{9}$

Di - leptonic channels $\sim \frac{1}{9}$

Full-hadronic channels $\sim \frac{4}{9}$

- \bullet semi-leptonic: high branching ratio
- ⇒ best precision
- di-leptonic: very clean, low background
- \Rightarrow used as a tool

← Assuming top mass 172.5 GeV, at NNLO precision

• chance to measure $t\bar{t}$ cross section at different energies

Tevatron results

- Tevatron Run II, 1fb⁻¹ $p\bar{p}$ collision, $\sqrt{s} = 1.96$ TeV
- Theory: $6.8\pm0.6~pb$ at NLO + threshold resummation, m_t at 175 GeV
- $7.3\pm0.5(\text{stat}) \pm0.6(\text{sys})\pm0.4(\text{lum}) \ pb \text{ for CDF}$
- $7.4\pm0.5(\text{stat})\pm0.6(\text{sys})\pm0.4(\text{lum})~pb$ for D0

Figure: $t\bar{t}$ cross section changes in the function of top mass

⇒ check for top mass measurement on ATLAS

Measuring $t\bar{t}$ cross section

• Counting method, determination of the cross section:

$$\sigma = \frac{N_{sig}}{\mathcal{L} \times \epsilon} = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \times \epsilon}$$

- To do this, we need to understand:
 - ▶ The integrated luminosity of data
 - ► Acceptance of the detectors
 - ▶ Objects (electron, muon, jet) identification efficiency
 - ▶ Trigger efficiency for electron and muon
 - ► Event selection efficiency
 - ▶ B jet tagging efficiency
 - ▶ Level of backgrounds

Event selection

- Selection in $t\bar{t} \to e\nu b \; \mu\nu b, \; \mu\mu, \; ee$
 - 1. Exactly 2 isolated leptons $p_{\rm T} > 20~$ GeV $(e~{\rm or}~\mu)$
 - 2. Two leptons have opposite charge
 - 3. $|M_{ll} M_Z| > 5$ GeV $(\mu \mu, ee \text{ channels})$
 - 4. $E_{\mathrm{T}}^{\mathrm{miss}} > 20~\mathrm{GeV}~(e\mu),\, E_{\mathrm{T}}^{\mathrm{miss}} > 35~\mathrm{GeV}~(\mu\mu,\,ee)$
 - 5. At least 2 jets with $p_{\rm T} > 20~{
 m GeV}$
- Selection in $t\bar{t} \to e\nu b \ qqb, \ t\bar{t} \to \mu\nu b \ qqb$
 - 1. Exactly 1 isolated lepton $p_{\rm T} > 20~{
 m GeV}~(e~{
 m or}~\mu)$
 - 2. $E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}$
 - 3. At least 4 jets with $p_{\rm T} > 20~{\rm GeV}$
 - 4. At least 3 jets with $p_T > 40$ GeV

Part2. Trigger efficiency measurement

- Usually $Z \to e^+ e^-$ and $Z \to \mu^+ \mu^-$ are used, but it needs an interpretation into $t\bar{t}$ events
- We measure the trigger efficiencies (e10 and mu10) using top events
 - $\,\rhd\,$ Efficiencies in $t\bar{t}\to e(\mu)\nu b~qqb$ are to be estimated
 - $\, \triangleright \,$ Efficiencies in the dileptonic channels are the measured
 - $\,\triangleright\,$ Trigger efficiencies for identified isolated electrons or muons
- In $t\bar{t} \to e\nu b \; \mu\nu b$, mu10 (e10) trigger is passed \Rightarrow directly measure e10 (mu10) trigger efficiency \Rightarrow Triggered not only by leptons from top, but also possibly from b jets
- In $t\bar{t} \to e\nu b \ e\nu b$ and $t\bar{t} \to \mu\nu b \ \mu\nu b$, tag and probe method is used \Rightarrow Here we measure really the efficiency for one object
- 10 TeV, MC@NLO + Herwig, about 7.7 fb^{-1}

Trigger efficiency in $t\bar{t} \to e(\mu)\nu b \ qqb$

Channel	# Events($100 pb^{-1}$)	TrigEff_e10, mu10
$t\bar{t} \rightarrow e\nu b \ qqb$	594.3 ± 2.8	$99.8 \pm 0.1\%$
$t\bar{t} \rightarrow \mu\nu b \ qqb$	719.0 ± 3.1	<i>88.1</i> ±0.2%

Table: Electron and muon trigger efficiency in $t\bar{t} \rightarrow e(\mu)\nu b \ qqb$

- ▶ e10 trigger efficiency is very high \Leftarrow cut electron p_T at 20 GeV
- ▶ About $7.7 \,\text{fb}^{-1} \, t\bar{t} \,\text{events} \Rightarrow \text{statistical uncertainty}$
- \blacktriangleright mu
10 trigger efficiency in $t\bar{t}\to e\nu b~qqb,\,t\bar{t}\to e\nu b~e\nu b\sim 10\%$
- ▶ e10 trigger efficiency in $t\bar{t} \to \mu\nu b~qqb,~t\bar{t} \to \mu\nu b~\mu\nu b \sim 3\%$

mu10 efficiency with $e\mu$ method

Channel	# Evt (100 pb ⁻¹)	TrigEff_mu10
$t\bar{t} \to e\nu b \; \mu\nu b$	277.2±1.9	88.2±0.2%
$t\bar{t}$ other	41.0±0.8	88.3±2.0%
single top	11.2 ± 0.9	$93.6 \pm 2.0\%$
Z + jets	12.9 ± 1.1	$89.1 \pm 1.8\%$
W + jets	1.7 ± 0.5	\geq 72.7% @68%cl
diboson	$9.7 {\pm} 0.3$	$89.1 \pm 1.1\%$
total bkg	75.8 ± 2.5	<i>89.7</i> ±0.5%

Work in Progress!

- ▶ Other $t\bar{t}$ leptonic channels (eg. $t\bar{t} \to e\nu b \ \tau\nu b$) are taken as backgrounds here
- ▶ Backgrounds are not biasing the measurement

mu10 efficiency with $\mu\mu$ method

Channel	# Evt (100 pb^{-1})	TrigEff_mu10
$t\bar{t} \to \mu\nu b \; \mu\nu b$	149.7 ± 1.4	86.9±0.2%
$t\bar{t}$ other	24.3 ± 0.6	$87.8 \pm 0.7\%$
single top	$6.3 {\pm} 0.7$	$86.6 {\pm} 2.7\%$
Z + jets	17.9 ± 1.1	$86.4 \pm 1.8\%$
W + jets	$0.6 {\pm} 0.2$	$72.2 \pm 9.1\%$
diboson	5.3 ± 0.3	$85.8 \pm 1.2\%$
total bkg	54.4 ± 2.0	$86.9 \pm 0.6\%$

Work in Progress!

► We expect ϵ $(t\bar{t} \to \mu\nu b \ qqb) = 86.9\% + (1-86.9\%) \times 10\% = 88.2\%$

efficiency of mulo from $t\bar{t} \to e\nu b \ qqb$

mu10 efficiency as a function of η , ϕ , $p_{\rm T}$ and nJet

• On the ϕ plot ATLAS feet and 8 toroid coils are seen

Summary for trigger efficiency measurement

- Using $t\bar{t}$ dileptonic channels, we can measure trigger efficiency
- With 10 TeV 100 pb⁻¹ data, the estimated statistical error:

Method	$e\mu$	$ee / \mu\mu$	
e10	0.3%	0.5%	
mu10	2.0%	2.6%	
Work in Progress!			

• Need a large statistics (fb^-1) to measure efficiencies as a function of $\eta,$ $\phi,\,p_{\rm T}$ and nJet

Part3. BTagging efficiency measurement: method

Figure: Number of b tagged jets $t\bar{t} \rightarrow e\nu b \; \mu\nu b$

- Selection as trigger measurement
- $t\bar{t} \rightarrow$ other di-leptons $(\tau + \tau \dots)$ are considered as signal
- The number of events with n btag jets N_i depends on ϵ_b , ϵ_{nonb} and F_{ij}
- We fit ϵ_b and N_{tot} , ϵ_{nonb} and F_{ij} fixed
 - \diamond The expected ϵ_b is 53.2%
 - \diamond Non-b jet mistag rate : ϵ_{nonb} 0.4%
 - \diamond F_{ij} is shown blow:

 $0.9 \pm 0.1\%$ $0.3\pm0.0\%$ $0.1 \pm 0.0\%$ $0.0\pm0.0\%$ $12.6 \pm 0.2\%$ $6.5\pm0.1\%$ $2.4\pm0.1\%$ $0.7\pm0.1\%$ $0.2\pm0.0\%$ $30.9 \pm 0.3\%$ $26.5 \pm 0.3\%$ $12.5 \pm 0.2\%$ $4.4\pm0.1\%$ $1.1\pm0.1\%$ $0.3 \pm 0.0\%$ $0.3 \pm 0.0\%$ $0.1 \pm 0.0\%$ $0.1 \pm 0.0\%$ $0.1 \pm 0.0\%$ $0.1 \pm 0.0\%$ $0.0 \pm 0.0\%$ $0.0\pm0.0\%$ $0.0\pm0.0\%$ $0.0 \pm 0.0\%$

Table: F_{ij} (fraction number of events with i jets matching b quark and j jets not) \equiv

Fitted results of total number of events

Work in Progress!

N_t (without bkgs)	Expected	fit N0 - N3	fit N1 - N3
$t\bar{t} \rightarrow e\nu b \; \mu\nu b$	317.6 ± 2.4	312.1 ± 14.5	307.9 ± 20.7
$t ar t o e u b \ e u b$	96.9 ± 1.3	98.9 ± 12.9	103.7 ± 18.7
$t ar t o \mu u b \; \mu u b$	176.0 ± 1.8	172.8 ± 13.1	176.4 ± 25.5

N_t (with bkgs)	Expected	fit N0 - N3	fit N1 - N3
$t\bar{t} \rightarrow e \nu b \; \mu \nu b$	317.6 ± 2.4	350.2 ± 14.3	322.2 ± 20.9
$t\bar{t} ightarrow e u b \ e u b$	96.9 ± 1.3	115.8 ± 12.8	110.8 ± 19.2
$t ar t o \mu u b \; \mu u b$	176.0 ± 1.8	205.4 ± 13.3	187.5 ± 26.0

Table: Results for total number of events with or without backgrounds

Fitted results of b tagging efficiency

ϵ_b (without bkgs)	Expected	fit N0 - N3	fit N1 - N3
$t\bar{t} ightarrow e u b \ \mu u b$	$53.2 \pm 0.2\%$	$54.3 \pm 2.4\%$	$55.2 \pm 4.7\%$
$t ar t o e u b \ e u b$	$53.2 \pm 0.4\%$	$53.1 \pm 5.4\%$	$51.2 \pm 7.2\%$
$t\bar{t} ightarrow \mu u b \; \mu u b$	$53.4 {\pm} 0.3\%$	$54.1 \pm 3.8\%$	$53.8 {\pm} 7.3\%$

ϵ_b (with bkgs)	Expected	fit N0 - N3	fit N1 - N3
$t\bar{t} \rightarrow e \nu b \; \mu \nu b$	$53.2 \pm 0.2\%$	$49.8 \pm 2.2\%$	$54.3 \pm 4.6\%$
$t ar t o e u b \ e u b$	$53.2 \pm 0.4\%$	$47.3 \pm 4.6\%$	$50.1 \pm 7.1\%$
$t \bar t o \mu u b \ \mu u b$	$53.4 {\pm} 0.3\%$	$47.1 \pm 3.1\%$	$52.4 {\pm} 7.2\%$

Work in Progress!

Table: Results for ϵ_b with or without backgrounds

- The ϵ_b is less affected by the background events than N_t
- N_0 makes ϵ_b lower because of its high background contamination

Systematics

• Relative statistical precision (10 TeV, 100 pb^{-1}) and systematics:

Fitting:	$N_0 - N_3$	$N_1 - N_3$
ϵ_{nonb} 0 - 2%:	$^{+0.8}_{-1.6}\%$	$^{+0.8}_{-2.5}\%$
background $\pm 100\%$:	9.6%	1.7%
b-jet label(ΔR 0.2 - 0.5):	$^{+1.6}_{-2.5}\%$	$^{+1.6}_{-3.4}\%$
jet energy scale $\pm 5\%$:	0.2%	0.2%
b-jet energy scale $\pm 1\%$:	< 0.1%	< 0.1%
AcerMC vs MC@NLO:	0.2%	0.1%
Total:	$^{+9.8}_{-10.1}\%$	$^{+2.5}_{-4.2}\%$
Statistical precision:	4.2%	6.8%

Work in Progress!

• By fitting $N_0 - N_3$, if backgrounds are better known, systematic would be lower

Part3.2 Measurement at 7 TeV, 10 pb⁻¹

Channels	Events	0-tag	1-tag	2-tags
$t\bar{t} \rightarrow e\nu b \; \mu\nu b$	12.9 ± 0.3	5	6	2
$t ar t o e u b \ e u b$	$3.8 {\pm} 0.2$	1.5	1.8	0.5
$t \bar t o \mu u b \; \mu u b$	$6.6 {\pm} 0.2$	2.3	3.3	1
Total	23.3 ± 0.4	8.8	11.1	3.5

Work in Progress!

• With this statistics, we cannot separate the 3 channels \Rightarrow fit the sum of the N_{tag} histograms

Channels	0-tag	1-tag	2-tags
signal	8.8	11.1	3.5
t ar t o l u b q q b	0.07	0.04	0.01
sigle top	0.58	0.54	0.05
Z + jets	3.20	0.07	0.00
W + jets	0.18	0.00	0.00
Total Bkg	4.03	0.65	0.06
S/B	2.2	17	55

Work in Progress!

Work in Progress!

No diboson background included yet, may be important.

Results with backgrounds

		Without Background		With Background	
	Expected	N_0 - N_2	N_1 - N_2	N_0 - N_2	N_1 - N_2
ϵ_b	45.4%	$43.7 \pm 8.0\%$	$46.3 \pm 15.9\%$	$37.8 \pm 7.5\%$	$45.0 \pm 15.4\%$
N_{tot}	23.3	$23.5 {\pm} 5.0$	24.0 ± 10.0	$28.0 {\pm} 5.6$	$25.5 {\pm} 10.5$

Work in Progress!

- Error bars = statistical error for 10 pb^{-1}
- Without background:
 - Average values in agreement with expected ones
 - Statistical error of factor 2 worse when using only N₁ - N₂ (expect lower sensitivity to bkg)
- Systematics due to background a factor 3 worse using N_0 N_2

Part3.3 Measurement using semileptonic channels

Figure: Number of b tagged jets $t\bar{t} \rightarrow \mu\nu b \ qqb$

- Backgrounds greater than in dileptonic
- 10 TeV, 100 pb⁻¹ sample
- Fit N_{tot} , ϵ_b and ϵ_c
- A limit is set on ϵ_c : [0%, 40%]
- The light jet mistagging rate is 0.166%

- ♦ S/B much smaller than in dileptonic
- \diamond Uncertainty: RMS for 100 pb⁻¹
- ♦ Fitted results, see below:

$t\bar{t} \to \mu\nu b \; \mu\nu b$	Expected	no bkg	with bkg
N_{tot}	1889.8 ± 5.8	1886.5 ± 48.7	2356.0 ± 57.7
ϵ_b (%)	54.4 ± 0.1	55.9 ± 4.7	52.6 ± 1.8
ϵ_c (%)	9.1 ± 0.1	8.2 ± 3.2	8.1 ± 2.7

Summary and to do list

- In order to measure $t\bar{t}$ cross section, we try to look with MC the trigger and b-tagging efficiency measurement
- We are eager to apply the measurement on data, but with 0.15 pb⁻¹ data, 0.024 $t\bar{t}$ is expected. So keep patient
- Finish the work on b-tagging efficiency measurement
- Get prepared for cross section measurement

