

LAL-Tsinghua activities in LHCb

Jibo HE (for the LAL-Tsinghua Collaboration)

LAL, Orsay

3rd FCPPL Workshop @ IPNL (Lyon), 08/04/2010

Jibo HE (LAL, Orsay)

LAL-Tsinghua activities in LHCb

3rd FCPPL Workshop 1 / 31

LAL-Tsinghua Collaboration

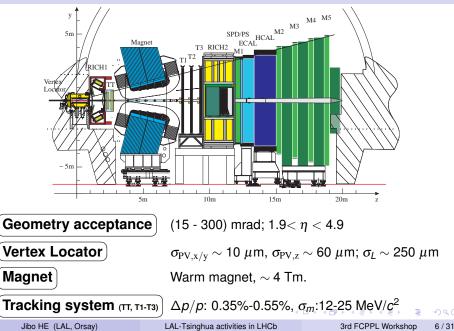
- Collaboration between the LHCb groups of LAL (Orsay) and Tsinghua University (Beijing) started end of 2004, support from FCPPL in 2007.
- Collaboration members
 - LAL
 - * Marie-Hélène SCHUNE
 - Patrick ROBBE
 - Sergey BARSUK
 - Jibo HE (Post-doc)
 - Wenbin QIAN (Joint PhD student, embassy grant, about to finish)
 - Tsinghua
 - ★ Yuanning GAO
 - ★ ZhenWei YANG
 - Wenbin QIAN (Joint PhD student, embassy grant, about to finish)
 - Bo LIU (about to join)
- Supported / backed up by theorists from China and France.

Exchanges

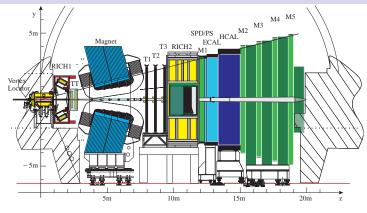
Visits

- 12/2009 Y. Gao visited LAL
- 05/2009 M-H Schune and P. Robbe visited Tsinghua
- 10/2008 Y. Gao visited LAL
- 10/2007 Y. Gao visited LAL
- 05/2007 J. He visited LAL
- 03/2006 P. Robbe visited Tsinghua
- 12/2005 Y. Gao visited LAL
- Exchanges of PhD student and post-doc
 - 09/2008 J. He became a post-doc at LAL
 - 07/2007 W.Qian became a joint PhD student
- Regular phone/video meeting
- Discussions in the LHCb weeks

Topics and outputs


- Topics, focus on the (very) early physics at LHCb
 - J/ψ production
 - B_c physics
- Outputs
 - Journal papers
 - * Phys. Rev. D 80, 114031 (2009), in collaboration with S. Descotes-Genon (LPT, Orsay) and E. Kou (LAL).
 - Conference talks (on behalf of the LHCb collaboration)
 - ★ 02/2010, Prospects for quarkonium studies at LHCb, P. Robbe on Quarkonium Production at the LHC workshop.
 - ★ 02/2010, Heavy Quarkonia Studies at LHCb, J. He on ReteQuarkonii Thematic Day.
 - * 09/2009, LHCb Production: Onia, Cross Section, Correlations, Y. Gao on Beauty 2009.
 - ★ 07/2009, B_c mass and lifetime at LHCb, W. Qian on The 2009 Europhysics Conference on High Energy Physics (HEP 2009).
 - ★ 04/2009, Measurement of *B_c* mass and lifetime at LHCb, J. He on DIS 2009.

(日)


- Outputs (cont.)
 - LHCb public notes
 - * One on J/ψ , LHCb-PUB-2010-011
 - * Two on *B_c*, CERN-LHCb-2008-059, CERN-LHCb-2008-077
 - LHCb internal notes
 - * One on *B_c*, CERN-LHCb-2009-017

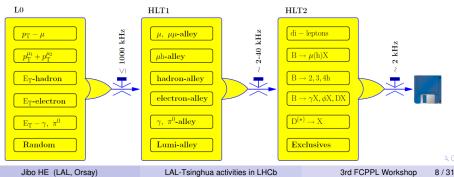
(4) (3) (4) (4) (4)

The LHCb detector

The LHCb detector (cont.)

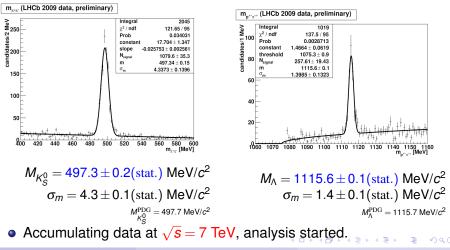
RICH1 & RICH2 $\varepsilon(K \to K) \sim 95\%$, mis-ID rate $(\pi \to K) \sim 5\%$ **Muon system** (M1-M5) $\varepsilon(\mu \to \mu) \sim 94\%$, mis-ID rate $(\pi \to \mu) \sim 3\%$ **ECAL** $\sigma_E/E = 10\%/\sqrt{E} \oplus 1\%$ (*E* in GeV)

 $\sigma_E/E = (69 \pm 5)\%/\sqrt{E} \oplus (9 \pm 2)\% (E \text{ in GeV})$


HCAL

The LHCb trigger system

- Level-0 Trigger (Hardware)
 - High p_T μ, e, γ, hadron candidates

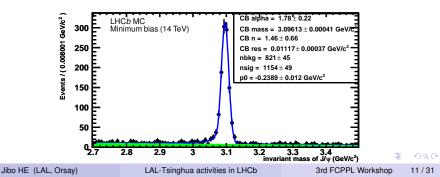

		had	μ	μμ	e±	γ	π^0
	$p_{\rm T}$ >(GeV)	3.5	1	$\Sigma > 1.5$	2.6	2.3	4.5
				· (7 00	23 1.1		

- ► Efficiency: Muon (90%), Electromagnetic (70%), Hadronic (50%)
- High Level Trigger (Software)
 - HLT1: Check L0 candidate with more complete info, add impact parameters and lifetime cuts
 - HLT2: Global event reconstruction + selections (inclusive or exclusive)
 - Efficiency: Muon (80%), Electromagnetic (60%), Hadronic (80%)

The LHCb status

- The LHCb detector is fully installed. First data at $\sqrt{s} = 900 \text{ GeV}$ recorded, analysis ongoing.
- Very preliminary K⁰_S and Λ mass distributions, real data!

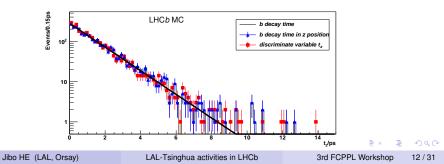
Jibo HE (LAL, Orsay)


J/ψ production: motivation

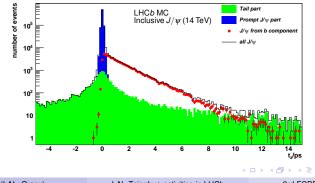
- Underlying production mechanism of J/ψ not understood yet.
 - ► LO color octet mechanism (COM) can describe the $p_{\rm T}$ spectrum and cross section of the J/ψ produced at Tevatron, but can not explain the polarization, NLO doesn't help.
 - The other models, e.g., color evaporation model, k_T factorization, soft color interaction model can not describe the cross section and polarization simultaneously, either.
 - New measurements at the LHCb experiment (higher energy, special η coverage) will help resolve this issue.
- Large cross section and clear $J/\psi \rightarrow \mu^+\mu^-$ signal
 - ► J/ψ crucial for detector alignment, calibration, μ -ID and tracking efficiencies measurements, and so on.
 - The measurements of the cross sections of the prompt J/ψ and the J/ψ from *b* decays are important for later analysis in LHCb, e.g., absolute branching fraction measurements, assess event yields.

イロト (過) () アイロト

J/ψ selection


- Selection studied with the simulated minimum bias events (including all backgrounds)
 - Loose μ ID selection, loose cuts on p_T(μ[±]), μ⁺ and μ⁻ coming from a common vertex, at least one reconstructed primary vertex
- Very good mass resolution: ~11 MeV/c².
- Expect about 1.3 M reconstructed J/ψ from 1 pb⁻¹ of data at $\sqrt{s} = 14$ TeV, $S/B = 17.3 \pm 2.3$ in $\pm 3\sigma$ mass window.
- Or about 0.56 M /pb⁻¹ reconstructed J/ψ at $\sqrt{s} = 7$ TeV.

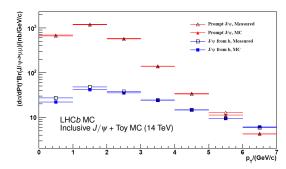
Separation of prompt J/ψ from $b
ightarrow J/\psi$



• Simple approximation of *b* lifetime

t_z distribution

- *t_z* distribution has four components
 - Prompt J/ψ , peak at 0, Gaussian
 - J/ψ from b decays, Exponential convoluted with Gaussian
 - Background distribution, estimated from mass sidebands
 - ► Long tail due to association to wrong primary vertex, measured using the J/ψ vertex and the PV in different event

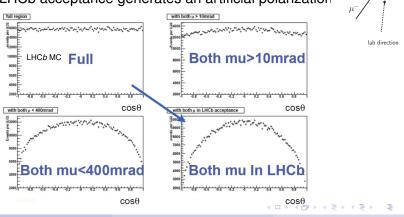


J/ψ cross section measurement

- Measurement in bins of $p_{\rm T}$ and η
 - ▶ 7 bins for $p_{\rm T}$ 0-7 GeV/*c*, 4 bins for η 3-5
- Combined mass and lifetime fit used to extract number of prompt J/ψ and J/ψ from *b* decays
- Reconstruction, selection and trigger efficiencies estimated using Monte Carlo
- Full procedure tested on a Monte Carlo sample corresponding to 0.8 pb⁻¹ @ 14 TeV Only binning in p_T, because of small Monte Carlo statistics
 - Signal: inclusive J/ψ MC sample
 - Background: toy Monte Carlo reproducing behavior (mass and pseudo-lifetime) seen on MC Minimum bias sample.

J/ψ cross section measurement (cont.)

- Results (p_T in range 0-7 GeV, two μ in LHCb acceptance)
 - ► $\sigma(\text{prompt } J/\psi) \times \mathscr{B}(J/\psi \rightarrow \mu^+\mu^-) = 2597 \pm 12(\text{stat.}) \pm 24(\text{efficiency}) \text{ nb (input: 2667 nb)}$
 - ► $\sigma(J/\psi \text{ from } b) \times \mathscr{B}(J/\psi \to \mu^+\mu^-) =$ 161±4(stat.)±2(efficiency) nb (input: 153 nb)



• Statistical error < 10% in each (p_T, η) bin, for 5 pb⁻¹ of data at $\sqrt{s} = 7$ TeV.

Jibo HE (LAL, Orsay)

Systematics by J/ψ polarization

- Polarization, using helicity frame. Will also use Gottfried-Jackson (GJ) and Collins-Soper (CS) frames, as suggested.
 - $\frac{dN}{d\cos\theta} \propto 1 + \alpha \cos^2\theta$; ($\alpha = 1$, Transverse; $\alpha = -1$, Longitudinal)
- LHCb acceptance generates an artificial polarization

Jibo HE (LAL, Orsay)

LAL-Tsinghua activities in LHCb

virtual Q direction

O rest frame

Systematics by J/ψ polarization (cont.)

- Tevatron measurements disagree with theoretical predictions
- Systematic error up to 22% if ignoring polarization

Input α	Input σ [nb]	Measured σ [nb] assuming $\alpha = 0$	Discrepancy
0	2820	$2758\pm\!27$	—
+1 (T)	3190	2738 ± 27	-14%
-1 (L)	2286	2787 ± 28	+22%

 Work done on measuring polarization and cross section simultaneously, finalizing...

Other systematics

Other systematics (partial list)

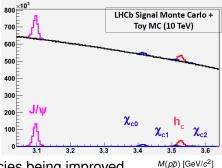
Dominated by the integrated luminosity.

Source	Approximate value
Integrated luminosity	\sim 10%
$\mathscr{B}(J/\psi{ ightarrow}\mu^+\mu^-)$	1%
Fit function (prompt J/ψ only)	2%
Event loss outside the mass window	2%
Monte Carlo matching	1%
Magnetic field effects	1%

B + 4 B +

Charmonium $\rightarrow p\bar{p}$

- This work is done in collaboration with B. Viaud and E. Kou.
- Simultaneous studies of Charmonium $\rightarrow p\bar{p}$

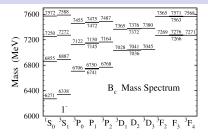

<i>c</i> c̄ mesons	Mass [MeV/c ²]	$ $ $\mathscr{B}(c\bar{c} ightarrow p\bar{p})$	
$\eta_c(1S)$	2980.3±1.2	$(1.3\pm0.4) imes10^{-3}$	
$J/\psi(1S)$	3096.916 ± 0.011	$(2.17\pm0.07) imes10^{-3}$	
$\chi_{c0}(1P)$	3414.75 ± 0.31	$(2.15\pm0.19) imes10^{-4}$	
$\chi_{c1}(1P)$	3510.66 ± 0.07	$(6.6\pm0.5) imes10^{-5}$	
$h_c(1P)$	3525.93 ± 0.27	not seen	
$\chi_{c2}(1P)$	3556.20 ± 0.09	$(6.7\pm0.5) imes10^{-5}$	
$\eta_c(2S)$	3637 ± 4	not seen	
$\psi(2S)$	3686.09 ± 0.04	$(2.74\pm0.02) imes10^{-4}$	

- Possible to observe $h_c(1P) \rightarrow p\bar{p}$ with 2010 data
 - ► $\mathscr{B}(h_c(1P) \to \rho\bar{p}) = (1.20 \pm 0.25) \times 10^{-3}$, estimated by E. Kou, consistent with [arXiv:1004.0496]: $(1.52 1.93) \times 10^{-3}$.
- Then measure $\frac{\sigma(c\bar{c}) \times \mathscr{B}(c\bar{c} \to p\bar{p})}{\sigma(J/\psi) \times \mathscr{B}(J/\psi \to p\bar{p})}$, etc.
 - Theoretically interesting. E.g., R_{χc} = σ(χ_{c2})/σ(χ_{c1}), 0.75±0.03(stat)±0.03(syst)±0.04(BF) measured by CDF [PRL 98,232001(2007)] while heavy quark spin symmetry predicts 5/3, new NLO calculation [arXiv:1002.3987].

Jibo HE (LAL, Orsay)

Charmonium $\rightarrow p\bar{p}$ (cont.)

- Event selections developed, mass resolutions about 10 MeV/c².
 - ▶ Mass distribution for 100 pb⁻¹ at $\sqrt{s} = 10$ TeV, assuming $\sigma(h_c(1P))$ similar to $\sigma(J/\psi)$, $\mathscr{B}(h_c(1P) \rightarrow p\bar{p}) \sim 0.12\%$

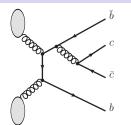

Trigger efficiencies being improved

- L0, $\varepsilon_{\text{L0/Sel}} = (99.7 \pm 0.07)\%$.
- Hlt1, $\varepsilon_{\text{Hlt1/(Sel\&L0)}} = (11.4 \pm 0.5)\%$.
- Hlt2, ε_{Hlt2/(Sel&L0&Hlt1)} = (17.1 ± 1.6)% → (89.4 ± 1.3)% after implementing a dedicated Hlt2 line for these channels.

Jibo HE (LAL, Orsay)

B_c spectrum and decays

- B_c spectrum
 - Estimated using potential models
- B_c^+ mass
 - Potential models: 6.2-6.4 GeV/c²
 - ▶ pQCD: 6326⁺²⁹₋₉ MeV/c²
 - Lattice QCD: 6278(6)(4) MeV/c²
- B_c mesons' decays



- Excited states (below *BD* threshold), decay through the Strong or EM interactions into B⁺_c
- Ground state B⁺_c: decay only weakly
- B_c^+ decay modes

•
$$\bar{b} \rightarrow \bar{c} W^+$$
, e.g., $J/\psi \pi^+$, $J/\psi \ell^+ v_\ell$

- $c \rightarrow sW^+$, e.g., $B_s^0 \pi^+$, $B_s^0 \ell^+ \nu_\ell$
- $c\bar{b} \rightarrow W^+$, e.g., $\bar{K}^{*0}K^+$, ϕK^+ , $\tau^+ v_{\tau}$
- B⁺_c lifetime predictions
 - Inclusive rates or ∑(exclusive rates)
 - $\tau(B_c^+)_{\rm SR} = 0.48 \pm 0.05$ ps

- *B_c* production
 - At hadron colliders, B_c generated mainly through $gg \rightarrow B_c + b + \bar{c}$
- B⁺_c production rate
 - Theoretical prediction [Phys. Rev. D 71, 074012 (2005)]

-	$ ({}^{1}S_{0})_{1}\rangle$	$ ({}^{3}S_{1})_{1}\rangle$	$ (^1S_0)_{8}g angle$	$ (^{3}S_{1})_{8}g\rangle$	$ (^{1}P_{1})_{1}\rangle$	$ ({}^{3}P_{0})_{1}\rangle$	$ ({}^{3}P_{1})_{1}\rangle$	$ ({}^{3}P_{2})_{1}\rangle$
LHC	71.1	177.	(0.357, 3.21)	(1.58, 14.2)	9.12	3.29	7.38	20.4
TEVATRON	5.50	13.4	(0.0284, 0.256)	(0.129, 1.16)	0.655	0.256	0.560	1.35

- * $\sigma({}^3S_1)/\sigma({}^1S_0) \sim 2.5$
- Color octets and 1st P-wave contributions are small
- * $\sigma(B_c^+)_{\text{LHC}}/\sigma(B_c^+)_{\text{Tevatron}} \sim O(10)$
- $\sigma(2S)/\sigma(1S)$ would be $|R_{2S}(0)/R_{1S}(0)|^2 \approx 0.6$
- Considering the contributions of the decays of these states, $\sigma(B_c^+) \sim 0.9 \ \mu b$ for $\sqrt{s} = 14$ TeV, or $0.4 \ \mu b$ for $\sqrt{s} = 7$ TeV.

A B + A B +

Experimental status

· .	$\Delta_c = \frac{1}{2} \frac{1}{2$							
	Collab.	$\mathscr{L}_{int} \left[pb^{-1} \right]$	Mode	Signal event	Mass [MeV/c ²]	Lifetime [ps]		
	CDF	110	$J/\psi\ell^+ v$	20.4 ^{+6.2}	$6400 \pm \! 390 \pm \! 130$	$0.46^{+0.18}_{-0.16}\pm0.03$		
	D0	210	$J/\psi\mu^+X$	$95 \pm 12 \pm 11$	$5950^{+140}_{-130}\pm 340$	$0.45^{+0.12}_{-0.10} \pm 0.12$		
	CDF	360	$J/\psi\pi^+$	14.6 ± 4.6	$6285.7 \pm 5.3 \pm 1.2$	_		
	CDF	360	$J/\psi e^+ v_e$	238	—	$0.463^{+0.073}_{-0.065}\pm 0.036$		
	CDF	2400	$J/\psi\pi^+$	108 ± 15	$6275.6 \pm 2.9 \pm 2.5$	—		
	D0	1300	$J/\psi\pi^+$	54 ± 12	$6300 \pm 14 \pm 5$	_		
	D0	1300	$J/\psi\mu^+X$	$\frac{881}{\pm}80$	—	$0.448^{+0.038}_{-0.036}\pm0.032$		
	CDF	1000	$J/\psi\ell^+ u$			$\begin{array}{c} 0.448^{+0.038}_{-0.036}\pm 0.032\\ 0.475^{+0.053}_{-0.049}\pm 0.018\end{array}$		

• Only $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)X$ studied

• Only production cross section times branching ratio of $B_c^+ \rightarrow J/\psi \mu^+ v_\mu$ relative to $B^+ \rightarrow J/\psi K^+$ measured by CDF (1 fb⁻¹)

$$\mathscr{R}_{\mu} = \frac{\sigma(B_{c}^{+}) \times \mathscr{B}(B_{c}^{+} \to J/\psi\mu^{+}\nu)}{\sigma(B^{+}) \times \mathscr{B}(B^{+} \to J/\psiK^{+})}$$

$$= 0.227 \pm 0.033(\text{stat.})^{+0.024}_{-0.017}(\text{syst.}) \pm 0.014(\rho_{\text{T}} \text{ spectrum})$$
(1)

for $p_T(B_c^+) > 6$ GeV/c and |y| < 1.

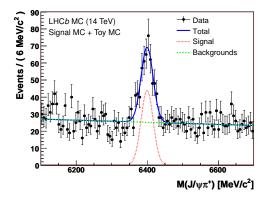
Image: A matrix

More on production rate

- From experimental measurements
 - For the positive charge B^+ , CDF measured: $\sigma_{B^+}(p_T \ge 6.0 \text{ GeV}/c, |y| < 1) = 2.78 \pm 0.24 \ \mu\text{b}$ $\Rightarrow \sigma_{B^+}(p_T \ge 6.0 \text{ GeV}/c, |y| < 1) \times \mathscr{B}(B^+ \rightarrow J/\psi K^+) =$ $(2.80 \pm 0.22) \times 10^{-3} \ \mu\text{b}$
 - For the positive charge B_c^+ : $\left[\sigma(B_c^+) \times \mathscr{B}(B_c^+ \to J/\psi\mu^+ \nu_\mu)\right]_{\exp} = (0.63 \pm 0.13) \times 10^{-3} \ \mu b$
- Theoretical predictions
 - ► $\sigma(B_c^+) = 0.073 \ \mu b \text{ at } \sqrt{s} = 1.96 \text{ TeV}$ $\mathscr{B}(B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu) = 1.9\%$ Fast simulation, $\varepsilon(p_T \ge 6.0 \text{ GeV}/c, \ |y| < 1) \sim 23\%$
 - ► For the positive charge B_c^+ : $\left[\sigma(B_c^+) \times \mathscr{B}(B_c^+ \to J/\psi\mu^+ \nu_\mu)\right]_{\text{theory}} = 0.16 \times 10^{-3} \ \mu \text{b}$
 - 3.6σ smaller than experimental value before considering theoretical uncertainties Eur. Phys. J. C 38, 267 (2004).
- Would be interesting to measure production cross section to clarify whether theoretical prediction can describe experimental measurements.

Jibo HE (LAL, Orsay)

 $B_c^+
ightarrow J/\psi(\mu^+\mu^-)\pi^+$


• Main issue: large background (reminder: $\sigma(B_c^{\pm}) \sim 0.4 \ \mu b @ 7 \text{ TeV}$)

- Real J/ψ + π from fragmentation or from *b* decays
 - ★ Prompt J/ψ (cross section: ~ 100 µb)
 - * $b \rightarrow J/\psi X$ (cross section: O(10) μ b)
- Combinatorial $J/\psi + \pi$ from fragmentation or from *b* decays
 - ★ Inclusive $b\bar{b}$ (cross section: ~ 460 μ b)
- Besides a tighter J/ψ selection, p_T(π) and lifetime cuts applied to suppress prompt backgrounds.
- Expect about 310 reconstructed $B_c^+ \to J/\psi(\mu^+\mu^-)\pi^+$ signal events from 1 fb⁻¹ of data at $\sqrt{s} = 7$ TeV, with $B/S \sim [1,2]$ @ 90% CL, assuming $\sigma_{\text{tot}}(B_c^{\pm}) = 0.4 \ \mu \text{b}$ and $\mathscr{B}(B_c^{\pm} \to J/\psi\pi^{\pm}) = 0.13\%$.

イロト イポト イヨト イヨト 二日

B_c^+ mass and lifetime measurement

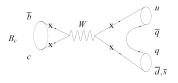
- Mass measurement
 - ► Statistical uncertainty: ±1.7 (stat.) MeV/c² (CDF: 2.9 (stat.) ± 2.5 (syst.) MeV/c²)

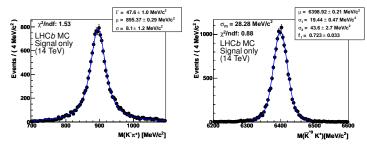
- Lifetime measurement
 - Statistical uncertainty: ±27 (stat.) fs. (D0: 38 (stat.) ± 32 (syst.) fs)

Jibo HE (LAL, Orsay)

 $B_c^+
ightarrow J/\psi(\mu^+\mu^-)\mu^+ v_\mu$ event selection

•
$$B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\mu^+\nu_\mu$$
, compared to $B_c^+ \rightarrow J/\psi\pi^+$
• Pro


- ★ Larger branching ratio, ~1.9%. Possible to measure lifetime and production cross section with early data.
- * 3 μ in the final states, easier (relatively) to reduce background Lifetime unbiased selection would be possible
- Contra
 - Missing energy caused by neutrino, partially reconstructed. Not easy to use MC-free method to estimate background.
- Besides a tighter J/ψ selection, a tight p_T cut (> 3 GeV/c) applied on the bachelor μ.
- Expect about 4.7 K reconstructed $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\mu^+\nu_\mu$ from 1 fb⁻¹ of data @ $\sqrt{s} = 7$ TeV, with $B/S \sim [6, 11]$ @ 90% CL.


Background components determination

- $J/\psi\mu$ combination, four possibilities:
 - 11, 10, 01, 00 (1: real, 0: fake) [CDF note 9294]
- Fake J/ψ (01,00)
 - Data Driven, estimated from J/ψ sidebands.
 - After removing this kind of background, we have real J/ψ + track identified as μ (using PID_{μ}).
- Fake lepton (10)
 - Data Driven, estimated from J/ψ + track sample (PID_μ requirements removed).
 - ★ $D^{*+} \rightarrow D^0(\pi^+K^-)\pi_s^+$, ∧ → $p^+\pi^-$, $K_S^0 \rightarrow \pi^+\pi^-$ studied to measure the mis-ID rates of $(\pi, K, p) \rightarrow \mu$, as a function of (p, η) .
 - After removing this background further, we have real J/ψ + real μ .
- *b*b̄ (11)
 - Monte Carlo
- Prompt J/ψ (11)
 - Data Driven, fraction floating in the lifetime fit
- Almost finished, finalizing...

Nonleptonic charmless B_c decays

- This study is done in collaboration with S. Descotes-Genon and E. Kou.
- One possible channel is $B_c^+ \rightarrow \bar{K}^{*0}K^+$, with branching ratio of O(10⁻⁶).
- Mass resolutions

• Expect a few reconstructed events, Multi-variate analysis will be used to search these channels.

Jibo HE (LAL, Orsay)

3rd FCPPL Workshop 29 / 31

(日)

Other ongoing studies

- Hlt2 line implemented for $B_c^+ \rightarrow J/\psi \pi^+, J/\psi \mu^+ X$, keep tuning with real data.
- $B^+ \rightarrow J/\psi K^+$
 - Control channel for B⁺_c → J/ψπ⁺, J/ψμ⁺X, and other hot channels like B⁰_s → μ⁺μ⁻, B⁰_s → J/ψ(μ⁺μ⁻)φ(K⁺K⁻).
 - Studying B⁺ mass, lifetime and production cross section measurements using this channel.
- $B_c^+ \to B_s^0 \pi^+$ with $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$
 - Expect about 100 reconstructed signal events from 1 fb⁻¹ of data at $\sqrt{s} = 14$ TeV.
- B_c excited states
 - ► $B_c^{*+} \rightarrow B_c^+ \gamma$ is difficult, $\Delta M = M(B_c^{*+}) M(B_c^+)$ only 60-70 MeV c^2 , γ is too soft to observe.
 - $B_c(2^1S_0) \to B_c^+\pi^+\pi^-$, and $B_c(2^3S_1) \to B_c^{*+}\pi^+\pi^- \to (B_c^+\gamma)\pi^+\pi^-$.

- The project is healthy and productive.
- Ready for the first measurements of the prompt J/ψ and $b\bar{b}$ production cross sections.
- Then the measurements of Charmonium $\rightarrow p\bar{p}$, $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\mu^+\nu_\mu$ and $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\pi^+$ will be performed.
- Other studies, e.g., nonleptonic charmless B_c decays, $B_c^+ \to B_s^0 \pi^+$ with $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$, and B_c excited states will follow.
- Supports from FCPPL very helpful and highly acknowledged!

イロト イポト イヨト イヨト 二日