Steiner-tree confinement and multiquarks

Jean-Marc Richard
j-m.richard@ipnl.in2p3.fr

Institut de Physique Nucléaire de Lyon
Université Lyon 1-CNRS-IN2P3
4, rue Enrico Fermi, F-69622 Villeurbanne Cedex, France

Lyon, April 7, 2010

Outline

(1) Introduction
(2) Some mechanisms

- Duality
- Nuclear forces
- Chromomagnetism
- Chromo-electricity
(3) Steiner-tree model of confinement
- Steiner tree for baryons
- Steiner tree for tetraquarks
- Pentaquarks, hexaquarks, etc.
(4) Conclusions

Introduction

Long and shaky history
(1) Z baryons with strangeness $S=+1$ in the late 60 s ,
(2) Baryonium in the late 70 s and early 80 s ,
© Dibaryon resonances?
(1) H dibaryon with strangeness $S=-2$ predicted,
(. Heavy pentaquark predicted in 1987,

- Light pentaquark predicted in 1997, base on earlier work,
((ight pentaquark candidate in 2003,
(3) Not confirmed in most other experiments
(0) Etc.
(1) Confusion added by theorists, jumping on a speculative idea, and producing tables and tables of multiquarks.

Duality

- s-channel exchanges vs. t-channel exchanges
- See Rosner, D.P. Roy, etc, baryonium partner of mesons in $\bar{N} N$,

- Exotic baryon partner of mesons in baryonium-baryon, etc.

Nuclear forces: hadron molecules

Meson exchanges bind NN. Why not other hadrons containing light quarks? Non-local operator here (transfer of energy).

- In particular, the $X(3872)$ was predicted as a $D \bar{D}^{*}$ system,
- When the $X(3872)$ was found, greeted as a success of this approach,
- However, recent measurements also suggest a radial excitation of a (c $\bar{c})$ state,
- If the X (3872) is eventually interpreted as (mainly) a molecule, other states predicted, but no proliferation (nuclear forces are spin and isospin dependent),
- In particular, the b-analogue predicted about 50 MeV below $B \bar{B}^{*}$,
- In the late 70 s , a high-lying $(c \bar{c})$ with $J^{P}=1^{--}$state was claimed as a molecule, due to anomalous branching ratios into $D \bar{D}$, $D \bar{D}^{*}+$ c.c. and $D^{*} \bar{D}^{*}$ (Voloshin, DeRujula and Glashow, ...)
- In fact, the branching ratios are explained by the nodal"structure of the state.

Chromomagnetism

- In the 70s, the hyperfine splitting between hadrons $\left(J / \psi-\eta_{c}\right.$, $\Delta-N$, etc.) explained à la Breit-Fermi, by a potential

$$
V_{S S}=-A \sum_{i<j} \frac{\delta^{(3)}\left(\boldsymbol{r}_{i j}\right)}{m_{i} m_{j}} \lambda_{i}^{(c)} \cdot \lambda_{j}^{(c)} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j},
$$

a prototype being the magnetic part of one-gluon-exchange.

- Attractive coherences in the spin-colour part: $\left\langle\sum \lambda_{i}^{(c)} \cdot \lambda_{j}^{(c)} \sigma_{i} . \boldsymbol{\sigma}_{j}\right\rangle$ sometimes larger for multiquarks than for the threshold.
- In particular $\langle\ldots\rangle$ twice larger (and attractive) in the best (uuddss) as compared to $\Lambda+\Lambda$.
- But $\left\langle\delta^{(3)}\left(\boldsymbol{r}_{i j}\right)\right\rangle$ much weaker for multiquarks than for ordinary hadrons, and needs to be computed. Hence uncertainties in this approach.

Binding mechanisms: chromo-electricity

- What about a (confining) spin-independent confining interaction for $\left(q_{1} q_{2} \bar{q}_{3} \bar{q}_{4}\right)$?
- For equal masses, found unbound.
- Symmetry breaking: if $H=H_{\text {even }}+\lambda H_{\text {odd }}, E(\lambda) \leq E(0)$
- But, the effect often benefits more to the threshold, and stability deteriorates,
- Exception: $(Q Q \bar{q} \bar{q})$ more stable than $(q q \bar{q} \bar{q})$
- Typically $(c c \bar{u} \bar{d})$ at the edge, $(b c \bar{q} \bar{q})$ or ($b b \bar{q} \bar{q})$ required if one uses

$$
V=-\frac{3}{16} \sum_{i<j} \tilde{\lambda}_{i}^{(c)} \cdot \tilde{\lambda}_{j}^{(c)} v\left(r_{i j}\right),
$$

- Question: what about a better model of confinement?

Steiner tree: baryons-1

- For mesons and baryons

$$
v=\sigma r_{12}, \quad V_{Y}=\sigma \min _{J} \sum_{i=1}^{3} r_{i J}
$$

- No dramatic change for baryon spectroscopy
- As compared to the additive model, which would give

$$
V_{\text {Baryon }}=\frac{\sigma}{2}\left[r_{12}+r_{23}+r_{31}\right] .
$$

Steiner tree: baryons-2

- This baryon potential is the solution of the famous Fermat-Torricelli problem of the minimal path linking three points, with an interesting symmetry restoration, intimately related to a theorem by Napoleon.

Steiner tree: tetraquarks-1

$$
\begin{aligned}
U & =\min \left\{V_{\text {flip-flop }}, V_{\text {Steiner }}\right\} \\
V_{\text {flip-flop }} & =\min \left\{d_{13}+d_{24}, d_{14}+d_{23}\right\}, \\
V_{\text {Steiner }} & =\min _{s_{1}, s_{2}}\left(\left\|v_{1} s_{1}\right\|+\left\|v_{2} s_{1}\right\|+\left\|s_{1} s_{2}\right\|\right. \\
& \left.+\left\|s_{2} v_{3}\right\|+\left\|s_{2} v_{4}\right\|\right),
\end{aligned}
$$

U dominated by the flip-flop term,

Steiner tree: tetraquarks-2

In the planar case, very simple construction of the connected term of the potential (this speeds up the computation).

$$
V_{4}=\sigma\left\|w_{12} w_{34}\right\|,
$$

maximal distance between the two Melznak points.

Steiner tree: tetraquarks-3

$$
V_{4}=\sigma\left\|w_{12} w_{34}\right\|,
$$

maximal distance between the two Melznak circles.

$$
V_{4} \leq \sigma\left\{\frac{\sqrt{3}}{2}[\|\boldsymbol{x}\|+\|\boldsymbol{y}\|]+\|\boldsymbol{z}\|\right\}
$$

which is exactly solvable. The Jacobi var.

$$
\begin{aligned}
& \boldsymbol{x}=v_{1} v_{2}, \\
& \boldsymbol{y}=v_{3} v_{4}, \\
& \boldsymbol{z}=\left(v_{1}+v_{2}\right) / 2-\left(v_{3}+v_{4}\right) / 2,
\end{aligned}
$$

Steiner tree: tetraquarks-4

- The crude, but rigorous, geometric considerations demonstrate stability at least for large M / m quark-to-antiquark mass ratio.
- What about an accurate numerical solution of this four-body problem?
- First estimate

VOLUME 43, NUMBER 5

Absence of exotic hadrons in flux-tube quark models

- Second estimate (Vijande et al.) PHYSICAL REVIEW D 76, 114013 (2007)

Stability of multiquarks in a simple string model

- However, the effect of antisymmetrisation and short-range forces not yet included.
- Tetraquarks with different flavours and large quark-to-antiquark mass ratio most likely, e.g., (bcū̄s).

Steiner tree: pentaquark

- $U=\min \{$ flip-flop, Steiner $\}$,
- Flip-flop
- Connected Steiner tree

- ($\bar{q} q q q q)$, as well as ($\bar{Q} q q q q)$, ($\bar{q} q q q Q)$ for $M \gg m$, and probably many other configurations bound vs. spontaneous dissociation. (hyperscalar approx. with flip-flop alone sufficient to prove binding)
- But short-range forces and antisymmetrisation constraints not yet included.
- Configurations such as (c$u u d s)$ should survive, as spin effects might help.

Steiner-tree: hexaquark

- Same scenario: flip-flop and connected diagrams,
- The latter, more interesting, but less important for the dynamics,
- Binding is obtained in most cases, where antisymmetrisation is neglected.

Steiner-tree: baryon-antibaryon

- Again: flip-flop and connected diagrams,
- Binding obtained in most cases.

Conclusions. Multiquarks:

The stability of multiquarks remains a very important issue, with recent developments

- Lattice QCD, QCD sum rules, AdS/QCD entering the game very seriously,
- Support to the flip-flop - Steiner-tree model of confinement,
- This model turns out more attractive than the empirical colour-additive model,
- To be refined in the case of identical quarks,
- Need more relativity, short-range forces, and non-adiabatic corrections
- Stable multiquarks likely in sectors with several flavours
- In particular: (ccūd $),(b c \bar{q} \bar{q})$

