Phenomenology at the LHC: a 6D scenario of Dark Matter

Giacomo Cacciapaglia IPNL

7 April 2010
3rd FCPPL Workshop
Lyon

New proposal:
 "New Physics at the LHC"

Tsinghua University:
Wang Qing, Kuang YuPing, Zhang Bin +3 students

IPN Lyon:

G.Cacciapaglia, A.Deandrea, L.Panizzi +2 students

The complementarity between the two groups will allow us to study:

signals of New Physics at the LHC (model dependent and independent);
new physics using the chiral lagrangian technique: Higgsless models, extra dimensions...

Example: a new scenario of Dark Matter in 6 dimensions.

XDimensions are a versatile tool, many models have been proposed: Gauge-Higgs unification, Higgsless models, GUTs, composite Higgs, technicolour, QCD...

New DM candidate: KK parity makes lightest resonance stable. Is it "natural" or ad-hoc? Is it generic in XD models?

- It's not generically the case: interesting models do not have it!
- we found a unique "natural" scenario in 6 dimensions where the symmetry is a direct consequence of the compactification!
arXiv:0907.4993
G.C., A.Deandrea, J.Llodra-Perez
work in progress with
J.Llodra-Perez, B.Kubik, L.Panizzi

Intro to XD: a scalar field

Action for a massless scalar:

$$
S=\int_{0}^{2 \pi} d x_{5} \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-\partial_{5} \phi^{\dagger} \partial_{5} \phi
$$

The equation of motion

$$
\left[p^{2}+\partial_{5}^{2}\right] \phi\left(p, x_{5}\right)=0
$$

is solved by

$$
\phi\left(p, x_{5}\right)=\sum_{k} f_{(k)}\left(x_{5}\right) \phi_{(k)}(p)
$$

with:

$$
f_{(k)}=\left\{\begin{array}{l}
\cos \left(k x_{5}\right) \\
\sin \left(k x_{5}\right)
\end{array} \quad \Rightarrow p^{2}=k^{2}\right.
$$

Note that under $\times 5 \rightarrow-\times 5, \cos \rightarrow+\cos$ while $\sin \rightarrow-\sin !$ Also, $k=0$ only allowed for cos!

KK parity is not natural! The typical situation is:

- We start from, say, 1 compact XD...

KK parity is not natural!

The typical situation is:

- We start from, say, 1 compact XD...
- We orbifold to obtain chiral fermions...

$$
x_{5} \rightarrow-x_{5}
$$

Fixed points!

KK parity is not natural!

The typical situation is:

Fixed points!

- We start from, say, 1 compact XD...
- We orbifold to obtain chiral fermions...
- We impose a discrete parity: Kaluza-Klein parity!

The KK parity is added ad hoc, it requires to identify two DIFFERENT fixed points!

Orbifold without fixed points:

- In 2D there are 17 orbifolds (discrete symmetries of the plane)...
- of which only 1 does not have fixed points/lines and is chiral:

Real projective plane

The real projective plane

$$
\begin{gathered}
\text { pgg }=\left\langle r, g \mid r^{2}=\left(g^{2} r\right)^{2}=1\right\rangle \\
r:\left\{\begin{array}{l}
x_{5} \sim-x_{5} \\
x_{6} \sim-x_{6}
\end{array} \quad g:\left\{\begin{array}{l}
x_{5} \sim x_{5}+\pi R_{5} \\
x_{6} \sim-x_{6}+\pi R_{6}
\end{array}\right.\right.
\end{gathered}
$$

KK parity is an exact symmetry of the space!

$$
p_{K K}:\left\{\begin{array}{l}
x_{5} \sim x_{5}+\pi \\
x_{6} \sim x_{6}+\pi
\end{array}\right.
$$

Spectrum of the SM on the RPP

+	-	+	+	-	
$p_{K K}=(-1)^{k+}$	$(0,0)$ $m=0$	$(1,0) \&(0,1)$ $m=1$	$(1,1)$ $m=1.41$	$(2,0) \&(0,2)$ $m=2$	$(2,1) \&(1,2)$ $m=2.24$
Gauge bosons G, A, Z, W	\checkmark	\checkmark	\checkmark	\checkmark	
Gauge scalars G, A, Z, W	\checkmark	\checkmark		\checkmark	
Higgs boson(s)	\checkmark		\checkmark	\checkmark	\checkmark
Fermions	\checkmark	\checkmark	$\checkmark(\times 2)$	\checkmark	$\checkmark(\times 2)$

Splittings I: loops

- Generic loop contributions can be written as:

$$
\Pi=\Pi_{T}+p_{g} \Pi_{G}+p_{r} \Pi_{R}+p_{g} p_{r} \Pi_{G^{\prime}}
$$

- For gauge scalars, tier (1,0):

$$
\begin{aligned}
\delta m_{B}^{2} & =\frac{g^{\prime 2}}{64 \pi^{4} R^{2}}\left[-79 T_{6}+14 \zeta(3)+\pi^{2} n^{2} L+\ldots\right] \\
\delta m_{W}^{2} & =\frac{g^{2}}{64 \pi^{4} R^{2}}\left[-39 T_{6}+70 \zeta(3)+17 \pi^{2} n^{2} L+\ldots\right], \\
\delta m_{G}^{2} & =\frac{g_{s}{ }^{2}}{64 \pi^{4} R^{2}}\left[-36 T_{6}+84 \zeta(3)+24 \pi^{2} n^{2} L+\ldots\right]
\end{aligned}
$$

- Divergence localized on singular points and proportional to the tier mass!
- Proportional to the KK mass scale!

Splittings II: Higgs VEV

- The Higgs VEV does not mix tiers (v is constant!)
- At level $(0,0)$, we obtain the Standard Model!
- For massive tiers:

$$
m_{(k, l)}^{2}=\left(k^{2}+l^{2}\right) m_{K K}^{2}+m_{0}^{2}
$$

- Mixing angle in the neutral gauge boson sector (A-Z): smaller than the Weinberg mixing angle!

$$
\left.W_{n}^{3} \quad B_{n}\right) \cdot\left(\begin{array}{cc}
\delta m_{W}^{2}+m_{W}^{2} & -\tan \theta_{W} m_{W}^{2} \\
-\tan \theta_{W} m_{W}^{2} & \delta m_{B}^{2}+\tan ^{2} \theta_{W} m_{W}^{2}
\end{array}\right) \cdot\binom{W_{n}^{3}}{B_{n}} .
$$

Splittings II: Higgs VEV

- Mixing angle in the neutral gauge boson sector (A-Z): smaller than the Weinberg mixing angle!

$$
\left.W_{n}^{3} \quad B_{n}\right) \cdot\left(\begin{array}{cc}
\delta m_{W}^{2}+m_{W}^{2} & -\tan \theta_{W} m_{W}^{2} \\
-\tan \theta_{W} m_{W}^{2} & \delta m_{B}^{2}+\tan ^{2} \theta_{W} m_{W}^{2}
\end{array}\right) \cdot\binom{W_{n}^{3}}{B_{n}} .
$$

Phenomenology: interactions I

- Bulk interactions: same as SM couplings, conservation of XD momentum!

- Only pair production off SM states is allowed!

$$
\text { i.e. } \quad(0,0) \Rightarrow(2,0)+(2,0)
$$

- Phase-space suppressed decays:

$$
\text { i.e. } \quad \begin{aligned}
(2,0) & \Rightarrow(1,0)+(1,0) \\
(2,0) & \Rightarrow(2,0)+(0,0)
\end{aligned}
$$

Phenomenology: interactions I

- Pair production rates are large:

Phenomenology: interactions II

- Loop interactions: suppressed, but less constrained.
- Single production and decays

Calculation in progress by J.Llodra-Perez

Phenomenology at the LHC: tiers $(2,0)$ and $(0,2)$

- Decay in pair of SM particles (via vertices at 1-loop)
- Small splittings: suppressed or forbidden decays in pair of $(1,0)$

$$
\begin{gathered}
W(2,0), Z_{(2,0)} \rightarrow l_{(1,0)} l_{(1,0)} \\
\text { top(2,0)} \rightarrow W_{(1,0)} b_{(1,0)} \\
g(2,0) \rightarrow q_{(1,0)} q_{(1,0)}
\end{gathered}
$$

Phenomenology at the LHC: tiers $(2,0)$ and $(0,2)$

- Decay in pair of SM particles (via vertices at 1-loop)
- Small splittings: suppressed or forbidden decays in pair of $(1,0)$

$$
\begin{aligned}
Z_{(2,0)} & \rightarrow \bar{l}_{(2,0)} l, \bar{l} l_{(2,0)} \rightarrow \bar{l} l V \\
& \rightarrow \bar{l}_{(1,0)} l_{(1,0)} \rightarrow \bar{l} l A_{(1,0)} A_{(1,0)} \stackrel{ }{e} \\
& \rightarrow \bar{l} l \\
& \rightarrow W^{+} W^{-} \vdots \\
& \rightarrow \bar{q} q
\end{aligned}
$$

Phenomenology at the LHC: $(2,0)-(0,2)$ degenerate case

- loop induced mixing cannot be neglected: one heavier state, and a lighter (cut-off independent) one
- More $(1,0)-(1,0)$ channels are open

Conclusions and outlook

- There is a unique 6D scenario with "natural" KK Dark Matter: interesting phenomenology!
- Small splittings make detection of lightest tier challenging: need boost to see!
- Tiers $(1,1)$ and $(2,0)$ decay to SM particles: nice resonances, but no MET! Interesting degenerate case.
- Tier $(2,1)$ decays in $(1,0)+(0,0): S M+M E T$!
- We implemented the model in FeynRules: easy interface with calcHep, Madgraph, FeynArt...

Bonus tracks

Example: a scalar field

Action for a massless scalar:

$$
S=\int_{0}^{2 \pi} d x_{5} d x_{6} \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-\partial_{5} \phi^{\dagger} \partial_{5} \phi-\partial_{6} \phi^{\dagger} \partial_{6} \phi
$$

The equation of motion

$$
\left[p^{2}+\partial_{5}^{2}+\partial_{6}^{2}\right] \phi\left(p, x_{5}, x_{6}\right)=0
$$

is solved by

$$
\phi\left(p, x_{5}, x_{6}\right)=\sum_{k, l} f_{(k, l)}\left(x_{5}, x_{6}\right) \phi_{(k, l)}(p)
$$

with:

$$
f_{(k, l)}\left(x_{5}, x_{6}\right)=\left\{\begin{array}{l}
\cos \left(k x_{5}\right) \cos \left(l x_{6}\right) \\
\cos \left(k x_{5}\right) \sin \left(l x_{6}\right) \\
\sin \left(k x_{5}\right) \cos \left(l x_{6}\right) \\
\sin \left(k x_{5}\right) \sin \left(l x_{6}\right)
\end{array} \Rightarrow p^{2}=k^{2}+l^{2}\right.
$$

Example: a scalar field

The parity of the field selects the solutions!

$$
f_{(k, l)}\left(x_{5}, x_{6}\right)= \begin{cases}\cos \left(k x_{5}\right) & \cos \left(l x_{6}\right) \\ \cos \left(k x_{5}\right) & \sin \left(l x_{6}\right) \\ \sin \left(k x_{5}\right) \cos \left(l x_{6}\right) \\ \sin \left(k x_{5}\right) & \sin \left(l x_{6}\right)\end{cases}
$$

Rot.	Glide	KK
+	$p_{k, l}$	$p_{k, l}$
-	$-p_{k, l}$	$p_{k, l}$
-	$p_{k, l}$	$p_{k, l}$
+	$-p_{k, l}$	$p_{k, l}$

$$
p_{k, l}=(-1)^{k+l}
$$

$$
\text { Rotation: }\left\{\begin{array}{l}
x_{5} \rightarrow-x_{5} \\
x_{6} \rightarrow-x_{6}
\end{array}\right.
$$

$$
\text { Glide: }\left\{\begin{array}{l}
x_{5} \rightarrow x_{5}+\pi \\
x_{6} \rightarrow-x_{6}+\pi
\end{array}\right.
$$

$$
\text { KK parity: }\left\{\begin{array}{l}
x_{5} \rightarrow x_{5}+\pi \\
x_{6} \rightarrow x_{6}+\pi
\end{array}\right.
$$

Gauge bosons

$$
S_{\text {gauge }}=\int_{0}^{2 \pi} d x_{5} d x_{6}\left\{-\frac{1}{4} F_{\alpha \beta} F^{\alpha \beta}-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}-\xi\left(\partial_{5} A_{5}+\partial_{6} A_{6}\right)\right)^{2}\right\}
$$

gauge fixing term
After solving the Equations of Motion, and imposing orbifold parities $[\mu \rightarrow(++), 5 \rightarrow(-+), 6 \rightarrow(--)]$ the spectrum is:

$$
p_{K K}=(-1)^{k+l} \quad m_{(k, l)}=\sqrt{ } k^{2}+l^{2}
$$

(k, l)	$p_{K K}$	$A_{\mu}^{(++)}$	$A_{5}^{(-+)}$	$A_{6}^{(--)}$
$(0,0)$	+	$\frac{1}{2 \pi}$		
$(0,2 l)$	+	$\frac{1}{\sqrt{2} \pi} \cos 2 l x_{6}$		
(0,2l-1)	-		$\frac{1}{\sqrt{2} \pi} \sin (2 l-1) x_{6}$	
$(2 k, 0)$	+	$\frac{1}{\sqrt{2 \pi}} \cos 2 k x_{5}$		
$(2 k-1,0)$	-			$\frac{1}{\sqrt{2 \pi}} \sin (2 k-1) x_{5}$
$(k, l)_{\mathrm{k}+1 \text { even }}$	+	$\frac{1}{\pi} \cos k x_{5} \cos l x_{6}$	$\frac{1}{\pi \sqrt{k^{2}+l^{2}}} \sin k x_{5} \cos l x_{6}$	$-\frac{k}{\pi \sqrt{k^{2}+l^{2}}} \cos k x_{5} \sin l x_{6}$
$(k, l)_{\mathrm{k}+1 \text { odd }}$	-	$\frac{1}{\pi} \sin k x_{5} \sin l x_{6}$	$\frac{\pi}{\pi \sqrt{k^{2}+l^{2}}} \cos k x_{5} \sin l x_{6}$	$-\frac{k}{\pi \sqrt{k^{2}+l^{2}}} \sin k x_{5} \cos l x_{6}$

Splittings III: localized operators

- Can add kinetic terms on the two singular points:

$$
\begin{aligned}
& \delta_{0}=\frac{1}{2}\left(\delta\left(x_{5}\right) \delta\left(x_{6}\right)+\delta\left(x_{5}-\pi\right) \delta\left(x_{6}-\pi\right)\right) \\
& \delta_{\pi}=\frac{1}{2}\left(\delta\left(x_{5}\right) \delta\left(x_{6}-\pi\right)+\delta\left(x_{5}-\pi\right) \delta\left(x_{6}\right)\right)
\end{aligned}
$$

$$
\mathcal{L}_{i}=\frac{\delta_{i}}{\Lambda^{2}}\left(-\frac{r_{1 i}}{4} F_{\mu \nu}^{2}-\frac{r_{2 i}}{2}\left(\partial_{5} A_{6}-\partial_{6} A_{5}\right)^{2}\right)
$$

Vectors:
Scalars::

$$
m_{(k, l)}^{2}=\sqrt{k^{2}+l^{2}}\left(1-\frac{z_{(k, l)}}{4 \pi^{2} \Lambda^{2}}+\ldots\right)
$$

$$
\delta m_{i, j}^{2}=m_{i} m_{j} \frac{\delta_{i j}}{4 \pi^{2} \Lambda^{2}}
$$

Note: remove degeneracy between (k, l) and (l, k) !
Small and arbitrary corrections: neglect for now!

Relic abundance

$200<\mathrm{mKK}<400 \mathrm{GeV}$

Phenomenology at the LHC: tiers $(1,0)$ and $(0,1)$

- Small splittings make detection of lightest tier challenging:

	$m_{X}-m_{\text {LLP }}$ in GeV	decay mode	final state + MET
$t^{(1,0)}$	70	$b W^{(1,0)}$	$b j j$
$G^{(1,0)}$	$40-70$	$q q^{(1,0)}$	$b l \nu$
$q^{(1,0)}$	$20-40$	$q A^{(1,0)}$	$j j$
$W^{(1,0)}$	20	$l \nu^{(1,0)}, \nu l^{(1,0)}$	$l \nu$
$Z^{(1,0)}$	20	$l l^{(1,0)}$	$l l$
$l^{(1,0)}$	<5	$l A^{(1,0)}$	l
$A^{(1,0)}$	0	-	

