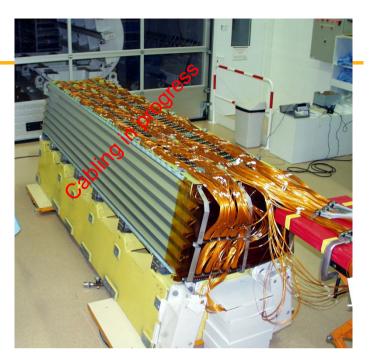

French – Chinese activities in the ATLAS group at CEA Saclay

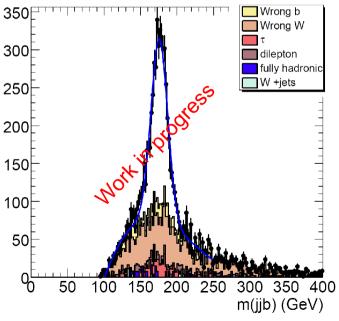
J. Schwindling

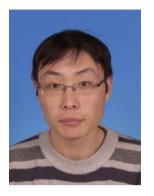
(Presented by B.Mansoulié)

IRFU / SPP

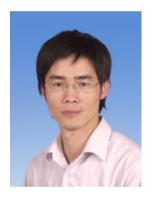
FCPPL, Lyon 2010


The ATLAS group at IRFU / SPP


- 39 members:
 - 24 permanent physicists
 - 11 phD students
 - 4 postdocs, visitors


Activities

- Hardware involvement:
 - Barrel EM calorimeter (design, assembly, testing, performances...)
 - Muon system: design, barrel toroidal magnet, alignment system and magnetic field for barrel
 - ATLAS upgrade / micromegas
- Muon software: detector description, alignment and B field, muon reconstruction, 3D event display
- Physics:
 - Higgs -> 4 leptons
 - Di-bosons
 - Z b-bbar
 - H-> W W
 - Z' searches
 - W&Z
 - Wmass measurement
 - Z differential Xsection
 - Z + jets
 - Top physics
 - Top mass, Xsection
 - Exotics with top

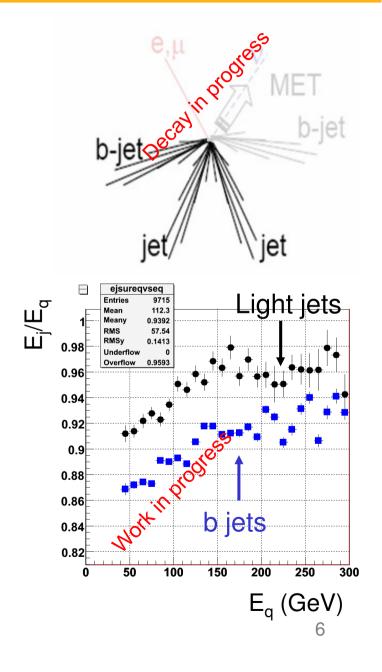


Activities involving Chinese colleagues

Shuoxing Wu:
Micromegas for ATLAS

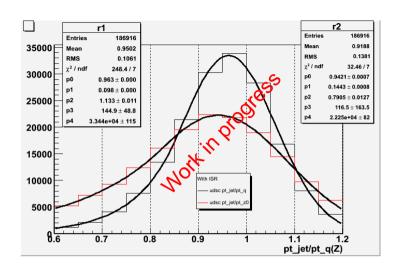
→ see Paul Colas' talk

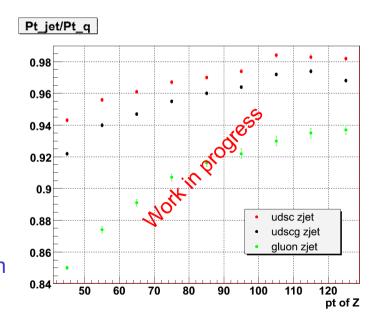
Hongbo Liao: Jet calibration for top mass measurement


Chao Xu: Measurement of the Z+jets cross-section

Jie Yu:
ttbar cross-section
measurement
→ see his talk for details

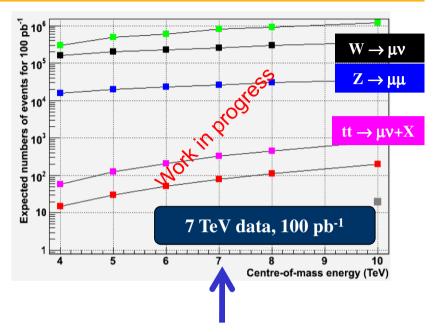
Jet calibration for top mass measurement


- Postdoctoral position: Hongbo Liao
 - from October 2007 to December 2009 in Saclay, work with Jérôme Schwindling
 - now working at Clermont-Ferrand
- Study with Monte Carlo simulation:
 - Top quark mass measured in tt → lvb jjb by reconstructing the jjb invariant mass
 - Systematic dominated by knowledge of jet calibration:
 - 1% error on light jets → 0.2 GeV
 - 1% error on b jets → 0.7 GeV
 - Light jets can be calibrated in situ to better than
 1% by using the W mass peak
 - b jet calibration different from light jets (~ 5%)
 - → Try to measure b / light ratio using the P_T balance in γ/Z + jet events



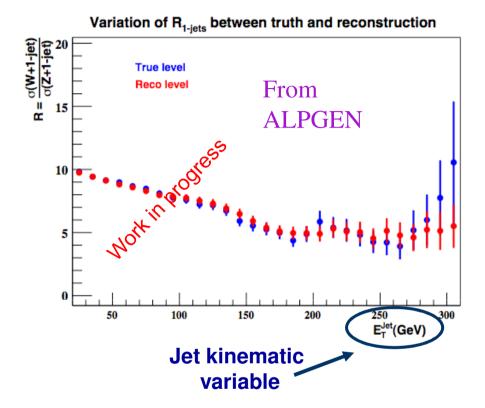
Issues in using P_T balance in γ/Z +jet events

- P_T(jet) / P_T(γ/Z) 2% lower than P_T(jet) / P_T(quark) because of gluon radiation → would cancel when comparing b and light jets
- Light jets not the same in ttbar events and in γ/Z + jets
 - For example the 20% of gluon jets in Z events shift the $P_T(jet)$ / $P_T(quark)$ ratio by -1.5%
- Only a few % of b jets in γ/Z +jet events →
 contamination of light jets shifts the PT ratio by +1%
- P_T spectrum of b jets softer in γ/Z +jet → average P_T ratio shifted by -1%
- ⇒ Question shifted to gluon/light/b ratio in γ/Z +jet evts


Work presented / documented in ATLAS Jet Calibration Task Force

Measurement of the Z+jets cross-section

- PhD thesis by Chao Xu
 - From February 2009 to Feb. 2012
 - Co-directed by Zhengguo Zhao (USTC Hefei) and Eric Lançon
- Prepare with simulations, then data
- Looked at the $\sigma(W + jets) / \sigma(Z+jets)$ ratio (W, Z \rightarrow muons)
 - Can be performed with early data
 - Probe NLO calculation for boosted W/Z bosons
 - Test leptons efficiencies and fake rate estimates
 - Data-driven backgrounds estimates (W+jets background to ttbar, EWK background to jets+Etmiss)

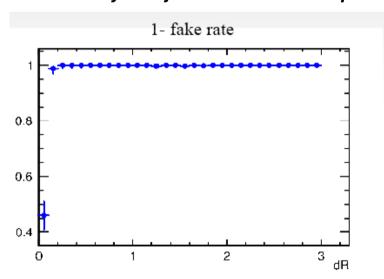


Expect: ~20k Z→II events, ~200k W→I events

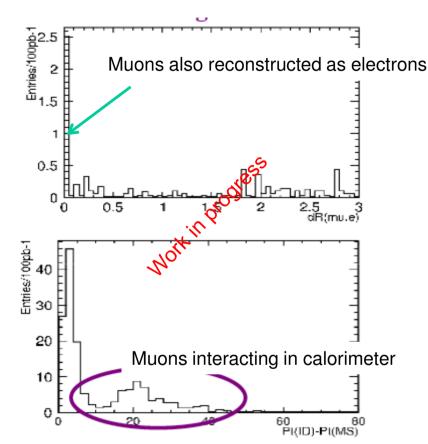
ΔR Stat ~ 6-7% for 1 Jet

The $\sigma(W + jets) / \sigma(Z + jets)$ ratio

- Advantages:
 - Jets effects cancel in the ratio
 - Resolution
 - Energy calibration and correction
 - Efficiency of selections
 - migration (unfolding not needed)
 - Non-perturbative QCD effects cancel
 - Luminosity cancel in the ratio


Measure this ratio in many kinematic regions for different jet multiplicities

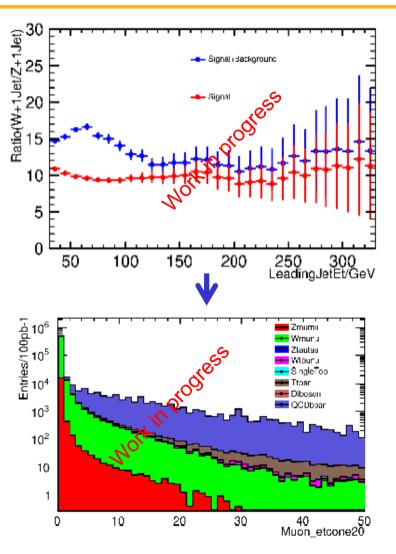
Work within the ATLAS W/Z+jets group


- Event selection
 - Try to improve on default selection
- Muon-jet overlap removal:

Catastrophic losses generate fake jets...

Probability that jet comes from real parton

The jet fake rate rises obviously when $\Delta R(\mu, \text{Jet}) \le 0.1$



Muon which has $\Delta R < 0.1$ with the Jet

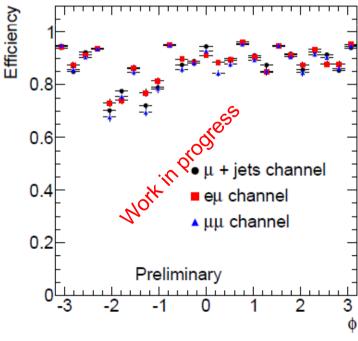
Background reduction

- Main background is bbar events
 - Can affect the measurement
 - Can be removed by muon isolation cut

- Muon/jet Overlap
- + Background reduction
- + keeping control of efficiencies
- => Need tuning of muon isolation and selection.

Energy deposited within ΔR<0.2 Around the muon after W->μν selection

ttbar cross-section measurement


- PhD thesis by Jie Yu
 - From October 2008 to June 2011
 - Co-directed by Shenjian Chen (Nanjing University) and Bruno Mansoulié,

work with Jérôme Schwindling

- Worked on trigger efficiency measurement for tt → lvb lvb (l = e or µ) events using a tag and probe method
 - ATL-COM-PHYS-2010-044
- Now working on b-tagging efficiency measurement using ttbar events
 - Work presented at several meetings at CERN
 - First study with 7 TeV simulation
 - See more in his talk

Channel	# Evt (100 pb ⁻¹)	TrigEff_mu10
$t\bar{t} \rightarrow e v b \mu v b$	277.2±1.9	88.2±0.2%
t ar t o e oldsymbol v b	19.1 ± 0.5	89.1±0.8%
$tar{t} ightarrow \mu v b \; au v b$	17.8 ± 0.5	$87.9 \pm 0.9\%$
tt other NoHad	4.0 ± 0.2	$88.5 \pm 1.8\%$
tī FullHad	$\leq 0.1 @95\%c1$	
single top	11.2 ± 0.9	$93.6 \pm 2.0\%$
$Z \rightarrow \mu^+ \mu^-$	0.3 ± 0.1	≥66.7% @68%cl
$Z ightarrow au^+ au^-$	12.6 ± 1.1	$89.1 \pm 1.8\%$
$W o \mu u$	1.3 ± 0.4	≥72.7% @68%cl
Wbb	≤0.5 @95%cl	
diboson	9.7 ± 0.3	$89.1 \pm 1.1\%$
total bkg	75.8 ± 2.5	89.7±0.5%

Table 6: Muon trigger efficiency using $t\bar{t} \rightarrow evb \mu vb$

Future thesis

- Higgs -> WW
- Most sensitive channel for SM Higgs search

Sensitivity in the first run at 7 TeV

- Relies strongly on a precise E_T miss
- => Study contribution of muon losses to E_T miss

Candidate PhD student from Nanjing University
Thesis directed by Shenjian Chen and Claude Guyot

Work with **Samira Hassani** (Saclay)

Administrative work in progress

Conclusion

- China CEA-Saclay collaboration is going on smoothly
- For physics: mainly on common theses of PhD students
 - Quite productive work
 - Co-directed thesis is a very good principle but the sharing of time between China and France is not always optimal for the students.
- Atlas upgrade
 - Very good work on R&D (Micromegas et al.)
 - Implementation in Atlas : needs reconsidering in view of the recent LHC schedule.