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Monte Carlo

2.2 Standard Monte Carlo integration

ba

f(x)• Consider 1-dimensional definite integral:

I =
∫ b

a
dxf(x)

This can be approximated by pulling N random
numbers xi, i = 1 . . . N , from a distribution
which is constant in the interval a ≤ x ≤ b:

I ≈
b− a

N

N
∑

i=1

f(xi).

The result becomes exact when N →∞.
(Note: the integral can also be performed in the dartboard fashion described on
the previous page. However, this is not efficient, why?)

• If the number of random numbers N is large enough, the error in the approxima-
tion is ∝ 1/

√
N , due to central limit theorem, discussed below.

• On the other hand, if we divide the a, b-interval into N steps and use some reg-
ular integration routine, the error will be proportional to 1/Np, where p = 1 even
with the most naive midpoint integral rule. Thus, Monte Carlo is not competitive
against regular quadratures in 1 dimensional integrals (except in some patholog-
ical cases).

• What now happens in higher dimensional integrals? Let us consider d dimen-
sions:

I =
∫

V
ddxf(x)

For simplicity, let V be a d-dim hypercube, with 0 ≤ xµ ≤ 1. Now the Monte Carlo
integration proceeds as follows:
- Generate N random vectors xi from flat distribution (0 ≤ (xi)µ ≤ 1).
- As N →∞,

V

N

N
∑

i=1

f(xi)→ I .

- Error: ∝ 1/
√

N independent of d! (Central limit)
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Monte Carlo simula/ons

• Born during WW2
• Stanislaw Ulam, John von Neumann … (Manha7an Project)
• Simulate radia>on/par>cles transport

• MC in HEP and medical physics
• Heavily used in High Energy Physics (CERN)
• MedPhys: roots in the 70’, imaging systems (SPECT, PET) and Radia-on Therapy

• Nowadays in med phys:
• All TPS (Treatment Planning System)
• All PET, SPECT ; Total-Body PET projects (Explorer, etc) 



Monte Carlo simulations evolution
• More than 60 years of evolution

• More accurate physical databases
• More generic codes 

(MCNPX, EGSNRC, Penelope, Geant4, Gate)
• Faster algorithms
• Use of powerful computing infrastructures 

(cluster, GPU)

• However
• Increasing need for detailed and accurate physical 

processing (TOF, SiPM, CZT, etc)
• Still with long simulations times (need VRT)
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Abstract
Monte Carlo techniques have become ubiquitous in medical physics over the
last 50 years with a doubling of papers on the subject every 5 years between
the first PMB paper in 1967 and 2000 when the numbers levelled off. While
recognizing the many other roles that Monte Carlo techniques have played
in medical physics, this review emphasizes techniques for electron–photon
transport simulations. The broad range of codes available is mentioned but
there is special emphasis on the EGS4/EGSnrc code system which the author
has helped develop for 25 years. The importance of the 1987 Erice Summer
School on Monte Carlo techniques is highlighted. As an illustrative example of
the role Monte Carlo techniques have played, the history of the correction for
wall attenuation and scatter in an ion chamber is presented as it demonstrates
the interplay between a specific problem and the development of tools to solve
the problem which in turn leads to applications in other areas.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Monte Carlo technique has become ubiquitous in medical physics in the last 50 years.
There are many different applications of this technique but the major focus of this review will
be the use of Monte Carlo to simulate radiation transport, with special emphasis on transport
involving electrons and photons.

If one searches the term ‘Monte Carlo’ on PubMed (http://www.ncbi.nlm.nih.gov/entrez)
one gets 14 452 hits as of January 2006 with the earliest being Kahn (1950). It surprised me
to learn that the earliest two papers related to electron–photon transport were both by fellow
Canadians (Schneider and Cormack 1959, Bruce et al 1962), two of whom, Harold Johns and
Doug Cormack, I have known quite well in contexts unrelated to Monte Carlo techniques.

* This paper is dedicated to W Ralph Nelson and to the memory of Martin J Berger, two men who have left indelible
marks on the field of Monte Carlo simulation of electron–photon transport.

0031-9155/06/130287+15$30.00 © 2006 IOP Publishing Ltd Printed in the UK R287



Ar/ficial Intelligence (A.I)

• A.I. methods, image processing (photos, video)
• Deep Learning, neural network

• Medical physics:
• Detec-on
• Auto segmenta-on
• Image genera-on (CT from MRI, CT from CBCT etc)
• Image enhancement (remove artefacts)
• Radiomics
• etc …



Deep learning principle 

• Step1: learn a model
• Input training database (large), composed of 

numerous independent samples
• Neural network architecture and learning methods

• Step2: use the model
• Get input data, apply the NN

DL: could it be useful for MC ?



Very short literature review

• DL and dose estimation
• [Lee2019, Götz2020, Roser2019, Nguyen2019, Liu2019]
• U-Net architecture, patch-based, predict dose
• Large dataset variation ?

• DL for dose computation denoising
• [Peng2019, Fornander2019, Neph2019, Javaid2019, 

Madrigal2018]
• Towards less particles to track during MC simulation
• Photon, proton dose. How to preserve dose gradient ?
• Towards GAN ?

• DL for scatter modeling and correction reconstruction
• [B van der Heyden2020, Lee2019, Maier2018, Sharp202]
• U-Net, dense scatter estimation

• DL for detector and source modelling
• [Sarrut2018, Sarrut2019, Zatcepin 2020, Sarrut2021]
• Depth-of-interaction resolution in pixellated PET detectors

Here: use of Deep Learning with Monte Carlo simulation

• Articles from 2018, 2019, 2020, 2021
• Evolving field
• Investigations, may not be ready for clinic yet

• Training dataset size?
• Training dataset variability?
• Generalisation to other cases types?



Examples of AI for Monte Carlo

• Example1: learning Angular Response FuncEon for SPECT simulaEon
• Example2: learning Phase-Space for photon beam characterisaEon 

Deep learning within Monte Carlo simulaEon



Example 1: 
learning ARF for 

SPECT simulation



SPECT/CT imaging system

360° projecVons (several E windows)

3D reconstruction (with CT)

Collimator

+ scinVllator detector 
(NaI, CsI, CZT)

Rad injecVon
(99mTc)



SPECT Monte-Carlo simula/on

• Long computation time
• Around 10-4 particles reaching detector
• Brute-force approach up to few days computation

• Platforms: 
• SimSET [Harrison1993]
• SIMIND [Ljungberg1989]
• GATE/Geant4 [Sarrut2014]



SPECT Monte-Carlo simula/on

• Several proposed Variance ReducEon Techniques (VRT) : 
• GIS: Geometrical Importance Sampling [Beenhouwer2009]
• ARF: Angular Response Func-on [Song2005, Descourt2010, Rydeen2018]
• MPS: Mul-ple Projec-on Sampling [Beenhouwer2008,  Liu2008]
• CFD: Convolu-on Based Forced Detec-on [Liu2008]
• FFD: Fixed Forced Detec-on [Cajgfinger2017]

[Braga2014]



ARF: principles

• Angular Response FuncEon

• Replace SPECT head detecEon
with tabulated response
• Incident par-cle at ARF plane

use tables to get energy 
windows probabili-es

• Assume: 
• Spa-ally invariant
• Detec-on depends on 

direc-on + energy

Learning SPECT ARF 5

2.3. Generating an image with ARF-nn151

The ARF-nn method was decomposed into a two-step process. First, as with ARF-152

histo, the simulation is run with the SPECT head replaced by an empty plane of 1 nm153

thickness, henceforth called the “ARF plane”, located just in front of the collimator.154

The position, direction, and energy of the photons that reach the ARF plane are stored155

in a dataset. In a second step, performed after the simulation, the image is computed as156

follows using this dataset. For every photon, the coordinates (u, v) in the image plane,157

sampled with 4⇥4 mm pixel size, is determined from the position in the ARF plane as158

proposed in [6], i.e. using the point where the incident photon direction vector intersects159

the image plane located half-way of the crystal length. Figure 1 illustrates the process160

with the ARF and image planes. For the values (E, ✓, �) of each incident photon, the161

NN is used to get the probabilities h(E, ✓,�) = yi. I(u, v, i) is then incremented by yi,162

with i the index of the energy window.163

photons
Collimator

Detected 
photons

Emitted

photons

ARF plane

ARF-histo

Emitted

ARF-nn
or

One count in 
one energy 

window

Detection 
probability

in all energy
windows

Image plane
(crystal midpoint)

Crystal

a) Conventional Monte-Carlo
b) ARF method

Figure 1. Top: Conventional SPECT simulation principle with photons tracked in
collimator and crystal. Bottom: SPECT simulation with ARF method (both ARF-
histo or ARF-nn). Photons are stopped at the ARF plane and the ARF model provides
probabilities to detect the photons in each energy window (distance between ARF plane
and image plane not at scale).

The time gain of the method compared to Monte-Carlo is that 1) the simulation164

required to generate the image is expected to be faster than a full simulation including165

tracking in the detector head, and 2) the ARF model (histograms or NN) gives the166

probability in all energy windows thus contributing to variance reduction.167
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ARF

• Advantages: 
• ARF tables needed to be computed only once
• Variance reduction: probability instead of counts
• Efficient, speedup x20-100 [Song2005, Descourt2010]

• Drawbacks:
• ARF tables needed for every detector configurations
• Large dataset needed to compute tables, 108 to 1011 [Rydeen2018]
• Choice of table binning (3D histogram) not clear
• Speedup not explicitly evaluated

Replace histogram tables 
by a neural network



Ar/ficial neural network

• Learn a predictive model from a training dataset 
• Training dataset: 

simulation, large source, complete energy spectra, 
complete detector (collimator/crystal)
108 to 109 particles + Russian Roulette
• Input space: 

particles energy and direction at the collimator entrance 
plane

Learning SPECT ARF 4

neural networks, the mapping function is in the form of a network of weighted additive111

values with non-linear (but di↵erentiable) transfer functions, organized in layers of112

neurons. Training the network consists in optimizing a loss function that minimizes113

some sort of di↵erence between the known and predicted output, performed on a large114

training dataset.115

Here, the 3D input space X is spanned by the two angles ✓ and �, and the energy E.116

The input fed to the NN is an N ⇥ 3 matrix X containing N vectors x = (✓,�, E) 2 X ,117

one for each photon. The goal of the NN is to predict the output vector y, being the118

probability of the input photon to be detected in one energy window. In the so-called119

“one-hot” notation, y is a vector of size n (the number of energy window), and the120

output space is denoted by Y . The vector component yi indicates the probability of the121

photon to be detected in the i
th upright energy window. The purpose of the NN is to122

find a mapping h from the input space X to the output space Y . The training dataset123

consists of (X, Y ), with Y the collection of y. Training the NN consists in finding the124

neuron weights for which h optimally represents the training dataset.125

The NN architecture was the following. We used H = 400 neurons in each of 3126

hidden linear fully connected layers. The activation function was the Rectified Linear127

Unit (ReLu) r(x) = max(0, x). Each layer l has a matrix of weights wl and computes128

r(wlx). Combined together, the network becomes h(x) = r(w3(r(w2(r(w1x))))) = y.129

Because the layers are fully connected, the NN has 3H + H
2 + H NW weight values,130

with 3 input data dimensions (E, ✓,�) and NW the number of energy windows. The131

optimisation process aims to find the values of the weights w that minimize a di↵erence132

(loss) between the input dataset ydata and the output of the network h(x) = y. The133

loss function was the multiclass cross entropy between the two probability distributions134

pydata and py. This criterion encourages the model to assign higher probability values to135

the correct labels across the training samples. It combines the negative log-likelihood136

loss with the normalized exponential activation function (the softmax function), that137

normalizes the exponential probabilities between 0 and 1.138

The optimization was performed using Adam optimizer which is a first-order139

gradient-based optimization based on adaptive estimates of lower-order moments [10].140

At each iteration (referred to as epoch), back-propagation is used to calculate the141

derivative of the loss function with respect to each weight and a fraction of this derivative142

is subtracted from that weight. The fraction is determined by the learning rate ↵,143

which controls the balance between convergence speed and precision. We used an144

adaptive learning rate starting at ↵ = 0.0001 and decaying by a constant factor when145

improvement in the cost function is lower than a given value. A maximum of 1000146

iterations with stochastic batches of 5000 samples at each iteration was used. Input147

data X where normalized according to mean and standard deviation. At the end of the148

optimisation, we ended up with a set of about 1.6 ⇥ 105 weights which define the NN149

(e.g. with NW = 8).150

Gives probability yi for an 
incoming photon to be detected 
in the ith energy window

x = (E, ✓,�)

T (p) : R3 7! R3 = p + u(p)

u(p) :
NX

i

!i �(p� pi)

p =

0

@
x
y
z

1

A

u(p) =

0

@
dx
dy
dz

1

A

Topt = argT max
⇥
↵Esim(A,B, T ) + (1�↵)Ereg(T )

⇤

I = {I1, I2, ... In}

Tk = T (I1, Ik)

T 2 = T (I1, I2)

1



Ar/ficial neural network architecture

• 3 hidden linear fully connected layers
• 400 neurons by layer
• AcEvaEon funcEon: ReLu
• Loss funcEon: mulEclass cross-entropy
• OpEmisaEon: Adam [Kingma2014]

(max 1000 iteraEons)
• Batch size: 5000 samples
• AdapEve learning rate

Learning SPECT ARF 4
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~ 105 weights (2 MB)



Results
• SimulaEon of 7 

circular sources of 
different energies
• Efficiency 

Speedup: 20 – 1000
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Figure 6. Top-left: simulated SPECT image for test2 (HEGP, 131I) for WSC [392-
414] keV window. The simulation was obtained with analog Monte-Carlo, 4 ⇥ 1010

primaries. Several sources are visible, the maximum number of counts in a voxel was
17392. Top-right: simulated SPECT image for the same simulation, but performed
with ARF-nn and only 4 ⇥ 107 primaries. By comparison, analog Monte-Carlo with
4 ⇥ 107 is shown bottom-right. Bottom left: speedup per voxel between analog and
ARF-nn, for the same image. High count areas depicted speedup around 200, while
low count regions may reach a speedup around 104.
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also studied.233
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We computed the e�ciency of the ARF variance reduction technique. Photon235

detection in SPECT is a Poisson process and the statistical uncertainty of the analog236

Monte-Carlo simulation is the square root of the number of counts. The relative237

uncertainty can therefore be estimated at the end of a simulation for all pixels in the238

images as: �(k) =
p
ck/ck. The global uncertainty is defined as the mean uncertainty239

over all pixels in P5%. As a control, it was checked that this method led to similar240

uncertainty estimation as with the conventional batch method. However, for the ARF241

methods, detected photons are accumulated with scalar weights not integer counts and242

the uncertainty cannot be estimated after the simulation. We calculated the uncertainty243

�k according to equation 2 below following the history by history method [13], where244

N is the number of primary events in the simulation, i a given event, and ck,i the245

count probability, given by the ARF, of event i in pixel k. The global uncertainty �246

is averaged over all pixels in P5%. Here also, we verified that this history by history247

method led to a similar uncertainty estimation as with the conventional batch method.248

To our knowledge, the e�ciency of the ARF method was never explicitly quantified.249

Like in [3], the e�ciency "k of a method in pixel k is computed with equation 4 taking250

into account the computed time t and the uncertainty, and the mean e�ciency "mean251

for the entire image is calculated by averaging over all voxels in P5%. The speedup of252

one method compared to another was computed as the pixelwise ratio of e�ciencies "k.253

Note that for Test1, Test2, and Test3, the e�ciency considers the computation254

time for particles tracked inside the detector head, without taking into account the time255

required to track particles in the phantom or in the patient.256
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Noise analysis The analog Monte-Carlo method accumulates discrete counts. Hence,258

the variation of the counts in a pixel follows a Poisson distribution, with the mean counts259

equal to the variance. However, the ARF method is a variance reduction technique that260

accumulates fractions of counts. Hence, the distribution of counts is not expected to be261

Poissonian. In order to analyze the di↵erence between the noise distributions of analog262

and ARF methods, simulations of a 20 cm radius circular source with uniform energy263

ARF 4x107

Analog 4x107
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17392. Top-right: simulated SPECT image for the same simulation, but performed
with ARF-nn and only 4 ⇥ 107 primaries. By comparison, analog Monte-Carlo with
4 ⇥ 107 is shown bottom-right. Bottom left: speedup per voxel between analog and
ARF-nn, for the same image. High count areas depicted speedup around 200, while
low count regions may reach a speedup around 104.

Analog 4x1010
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Example 1: conclusion

• Alternative approach to ARF by histogram using Artificial Neural Network
• Similar efficiency, require less data to build, more consistent (binning)
• Different noise distribution, need to add Poisson noise
• Available in GATE (open-source) www.opengatecollaboration.org

« Learning SPECT detector angular response func7on with 
neural network for accelera7ng Monte-Carlo simula7ons » 
D. Sarrut, N. Krah, JN. Badel, JM. Létang, Physics in Medicine 
and Biology, 2018

© 2018 Institute of Physics and Engineering in Medicine

1. Introduction

SPECT imaging is widely used to provide 3D images of the spatial distribution of single-photon emission 
radiotracers. A conventional SPECT system is composed of a scintillation detector and photomultiplier tubes 
(PMTs) to record the location and the energy of detected photons. In front of the detector, a lead or tungsten 
honeycomb collimator is used to select photons traveling along a given direction in order to retrieve an estimate 
of their point of origin within the patient. The detected photons are stored according to energy windows. The 
energy windows are determined around the radionuclide photo-peaks and, from the rest of the energy spectrum, 
so as to account for lower-energy photons that have most likely undergone Compton scatter prior to detection 
(and whose origin is therefore uncertain). 

Monte-Carlo simulation of SPECT images is typically done in two main steps: (1) tracking the particles 
inside the medium, e.g. a patient CT image, and (2) tracking the particles in the SPECT detector head. The first 
step generates particles from an activity distribution of a given radionuclide such as 99mTc, 111In  or 177Lu and 
tracks photons from voxel to voxel until they escape from the patient. This process may be accelerated by variance 
reduction techniques (VRT) such as ray-tracing based methods (Ljungberg and Strand 1989, Roshan et al 2016, 
Cajgfinger et al 2018) and/or the use of GPU (Garcia et al 2016, Rydéen et al 2018). Here, we focus on the second 
step, which involves the simulation of the photon interactions in the collimator and in the scintillator (crystal) as 
well as the digitization chain of the readout electronic components. The collimator–detector response function 
(CDRF) combines the accumulated effects of all interactions in the imaging head. It may be approximated with 
ARF methods (Song et al 2005, Rydéen et al 2018).

The ARF method replaces explicit photon tracking in the imaging head with a tabulated model of the CDRF. 
The tabulated model is derived from a simulation with a gamma source covering the energy range of the radi-
onuclide of interest and including the complete detector head with collimator, crystal and digitization process. 
The model takes as input the direction angles and the energy of an incoming photon and determines the prob-
ability for this photon to be detected in each defined energy window. This first step needs to be performed only 
once per type of SPECT head, radionuclide and energy window definition. Once the lookup tables are computed, 
they can be used for every simulation having the same conditions (same collimator/detector, radionuclide energy  
windows), independently of the source distribution and the medium, phantom or patient. The ARF method 

D Sarrut et al

Learning SPECT detector angular response function with neural network for accelerating Monte-Carlo simulations
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Abstract
A method to speed up Monte-Carlo simulations of single photon emission computed tomography 
(SPECT) imaging is proposed. It uses an artificial neural network (ANN) to learn the angular 
response function (ARF) of a collimator–detector system. The ANN is trained once from a complete 
simulation including the complete detector head with collimator, crystal, and digitization process. In 
the simulation, particle tracking inside the SPECT head is replaced by a plane. Photons are stopped 
at the plane and the energy and direction are used as input to the ANN, which provides detection 
probabilities in each energy window. Compared to histogram-based ARF, the proposed method 
is less dependent on the statistics of the training data, provides similar simulation efficiency, and 
requires less training data. The implementation is available within the GATE platform.
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Example 2: 
learning Linac phase-space



Radiation Therapy Linac head simulation

Goal: determine beam characteristics 
(energy, position, direction distributions)

e- beam

Few photons exiVng
VRT (brem splieng)



Phase Space (PHSP)

• Store beam properties as Phase Space
• A PHSP is a list of particles (around 1e8, 1e9)
• Properties: E, x, y, z, dx, dy, dz, w, (time)

• Advantages:
• Computed only once
• Fast to use
• Can be shared

• Drawback
• Several GB
• When a cluster is used, should be shared among workers
• Limited number of particles
• Extensive description, not a model
• Latent variance [Sempau2001]

Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4 911
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Figure 5. Analysis of the direction parameter φ using a PhS of 1.1 × 107 photons. Top: φ
distribution (a). Bottom: double dependence of φ with photon radial position (b) and energy (c).

PhS and the SBS PhS. A further improvement in the toolkit would be to fill the histograms
directly during the simulation, thus avoiding to store bulky PhSs.

Depth doses and dose profiles were computed with the MSM and compared to the reference
measurements, using both the reference and the SBS PhSs. These comparisons allowed for
evaluating the bias introduced by the SBS tool when using the MSM. Additional calculations
were performed using the EGEE grid for full simulations, from the electron source to the water
phantom, using the SBS tool. These simulations allowed for evaluating the bias introduced by
the MSM, when using the SBS tool. Eventually, some simulations were performed by reading
the reference PhS and were compared to MSM calculations. It is noteworthy that it is possible
to perform all kind of GATE simulations on the grid, for radiotherapy as well as for PET and
SPECT applications. See Camarasu-Pop et al (2010) for implementation details of GATE on
the EGEE grid.

2.8. SBS tool

The mandatory tuning stage of the two electron beam parameters (mean energy and spot
size) required many simulations. A different PhS file corresponding to each configuration
was used by the MSM in order to compare simulations with measurements in water. A
variance reduction technique SBS (Rogers et al 2002), is now implemented in GATE (Jan
et al 2010) in order to increase the production of photons by the bremsstrahlung process.
The improvement of the simulation efficiency for radiotherapy applications is a complex task,
which was extensively studied for the EGSnrc/BEAMnrc code: directional bremsstrahlung
splitting (DBS) (Kawrakow et al 2004, Mainegra-Hing and Kawrakow, 2006), bremsstrahlung

Example of dependence of direction φ and energy



GAN: Genera/ve Adversarial Network

[Goodfellow, 2014]
Goal: « learn » a multidimensional probability distribution

Initial application : 
artificial images generator

https://www.thispersondoesnotexist.com
https://www.thiscatdoesnotexist.com
https://youtu.be/2edOMMREazo?t=37

https://www.thispersondoesnotexist.com/
https://www.thiscatdoesnotexist.com/
https://youtu.be/2edOMMREazo?t=37


GAN: Genera/ve Adversarial Network

• Training dataset
• Dimension d=7 
• Samples of an unknown distribu-on   

• Generator

• Discriminator
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GAN: Genera/ve Adversarial Network

• Training dataset
• Dimension d=7 
• Samples of an unknown distribution   preal
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Loss func/on

• GAN notoriously difficult to train
• Alternative formulations: Wasserstein GAN [Arjovsky 2017] 

• “Earth-mover” distance (EMD) : cost of the optimal transport
• Un-tracktable in practice, but approximated:

GAN for MC simulations 3

The goal is to learn a generative function G that models a distribution p✓. ✓74

are the parameters of the distribution model approximating a target distribution preal75

only known by samples from a training dataset [6]. The neural network architecture is76

composed of two multilayer perceptrons, D and G, competing one against the other,77

hence the term adversarial. The generator G(z;✓G) is trained to produce samples78

distributed similarly as the data distribution of x. It takes z as input, sampled from a79

simple normal prior distribution, N (0, 1), and produces a sample x as if it were drawn80

from preal. The parameters ✓G are the weights of the network G. The discriminator81

D(x;✓D) is trained to distinguish between samples from the data distribution and those82

generated by G. It takes x as input and outputs a single scalar that represents the83

probability of x coming from the real data rather than from the generator. D is trained84

to maximize the probability of correctly identifying samples from the training data as85

real and those generated by G as fake. The parameters ✓D are the weights of the network86

D.87

The GAN training process is a zero-sum non-cooperative game which converges88

when the discriminator and the generator reach Nash equilibrium [13]. A Nash89

equilibrium is reached when one player (neural network) will not change its action90

(weights) regardless of what the opponent (the other network) may do. In the91

conventional GAN formulation [6], the considered cost function was the Binary Cross92

Entropy (BCE) both forG andD. BCE(p, q) between two distributions p and q is related93

to the Kullback-Leibler divergence which measures the performance of a classification94

model whose output is a probability value between 0 and 1. It has been shown that the95

loss function of GAN quantifies the similarity between the data distribution generated96

by G and the real sample distribution, by the Jensen-Shannon divergence (JSD) when97

the discriminator is optimal [6]. JSD is a symmetrized and smoothed version of the98

Kullback-Leibler divergence.99

However, in practice GAN was found to be di�cult to train and subject to mode100

collapse [8]. Here, we instead used the Wasserstein GAN variation proposed by Arjovsky101

et al. [8], that use Earth Mover’s distance as an alternative GAN loss function. The102

Wasserstein (or Earth-Mover) distance between two distributions p and q is the cost of103

the optimal transport to deform p into q. It has been shown that it helps to stabilize104

the learning process, being less subject to vanishing gradient than conventional GAN.105

In practice, there are few changes from the original GAN. First, the losses become as in106

equations 1 and 2.107

JD (✓D,✓G) = Ez [D(G(z))]� Ex [D(x)] (1)

JG (✓D,✓G) = � Ez[D(G(z))] (2)

Then, after every gradient update, the weights ✓D are clamped to a small fixed108

range (e.g. [�0.01, 0.01]) in order to enforce weights to be in a compact space. Finally,109

the authors [8] also recommend to use the RMSProp optimizer [14] instead of the110

conventional Adam optimizer [15] which uses momentum processes that may cause111



Experiments

PHSP from IAEA web siteGAN for MC simulations 5

PHSP Size Nb of particles

Elekta PRECISE 6MV 2 files of 3.9 GB 1.3⇥ 108 photons each file

CyberKnife IRIS 60mm 2 files of 1.6 GB 5.8⇥ 107 photons each file

Table 1. Characteristics of the two used datasets

Monte-Carlo relative statistical uncertainty �(k) = S(k)
D(k) of the deposited energy in a149

voxel k was computed with the history by history method [20], with k a voxel index,150

S(k) the statistical uncertainty in voxel k and D(k) the total deposited energy in voxel151

k152

In order to compare particles from PHSP and GAN-generated particles, the153

marginal distributions of all 6 parameters were plotted. Then, simulations to compute154

the deposited energy in a water using PHSP and GAN-generated particles were155

compared by analyzing the voxel by voxel di↵erences of the deposited energy. The156

distribution of voxel di↵erences naturally contains uncertainty and we evaluated the157

similarity of this uncertainty between PHPS and GAN generated data. We thus158

compared the distribution of di↵erences between two PHSP (�PHPS), and between159

a GAN and a PHSP simulations (�GAN). The di↵erences were normalised by the160

maximum value in the image, as a proxy for the prescribed dose, denoted D̂PHPS2 ,161

see equation 4.162

�PHPS(k) =
DPHPS2(k)�DPHPS1(k)

D̂PHPS2

(3)

�GAN(k) =
DPHPS2(k)�DGAN(k)

D̂PHPS2

(4)

Moreover, in every voxel, we compute the ratio between voxel di↵erence and163

uncertainty. If the error were normally distributed, the distributions of those ratios164

should have a zero mean and unit standard deviation. Finally, we plot depth dose165

curves (along z) and transversal dose profile at 20mm depth.166

Results167

Figure 1 depicts the evolution of the loss function JD (✓D,✓G) (equation 1) during the168

training process, as a function of iterations. Figures 2 and 3 display the marginal169

distributions of the 6 parameters (E, x, y, dx, dy, dz; z was fixed) extracted from the170

initial PHSP compared to the ones obtained from the GAN. Note that the dataset171

used to train the GAN was di↵erent from the one used for validation. The left panel in172

figure 4 shows the distribution of the relative di↵erences �PHSP and �GAN for both tests173

(Elekta and CyberKnife). The mean di↵erences are indicated with vertical lines. The174

right hand panels show the distribution of the ratio between di↵erences and uncertainty,175

that should ideally depict a zero mean and standard deviation of one. Finally, figures 5176

show transversal and depth profiles of deposited energy for both tests. The learning177



Results

Marginal distribuQons of 
the 6 parameters
obtained from the 
reference PHSP and from
the GAN, for Elekta 6MV 
linac. 
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Results

• Dose distribu-on in water from PHSP
108 primary photons

• Compare dose between: 
1. PHSP1 vs PHSP2
2. PHSP1 vs GAN

• Voxel by voxel dose comparison

LINAC head

PHSP plane

Waterbox

Difference/uncertainty

Beam



Results

Distribu-ons of rela-ve 
differences between 
• PHSP1 and PHSP2 
• PHSP1 and GAN

Ver-cal lines indicate 
the mean differences

Difference rela-ve to 
the prescribed dose



Example 2: conclusion

• Using GAN to represent a Phase-Space is feasible

• Final GAN model: few MB (vs PHSP = 4 GB)

• Sufficient for dose computation

• Training is difficult: hyperparameters, 511 keV peak, …

• Available in GATE www.opengatecollaboration.org

• Perspectives :
• Could it be learned from less particles ? 
• Detailed statistical analysis in progress
• Other applications of GAN within MC simulations

« Genera7ve Adversarial Networks (GAN) for compact 
beam source modelling in Monte Carlo simula7ons » 
D. Sarrut, N. Krah, JN. Badel, JM. Létang, Physics in 
Medicine and Biology, 2019

© 2019 Institute of Physics and Engineering in Medicine

1. Introduction

Monte Carlo simulations are widely used to characterize sources of particles, such as those of linac photon/
electron beams, x-ray tubes, proton beam nozzles, brachytherapy radionuclide seeds, particles emerging from 
a voxelised patient geometry (to simulate a nuclear imaging process), etc. The computation time to perform 
such simulations is generally high and phase space files have been acknowledged as a necessary means to avoid 
repeated and redundant execution of part of the simulation. A typical example is the dose calculation in a patient 
CT image where the simulation is split into two parts (Andreo 2018). A first, detailed, Monte Carlo simulation 
is performed to transport particles through the accelerator treatment head elements (primary collimation, 
flattening filter, monitor chambers, mirrors, secondary collimation, etc), up to a virtual plane. The properties 
(energy, position, direction) of all particles reaching the plane are stored in the phase space file and depend on the 
detailed properties of the treatment head components, such as its shape and materials. A second simulation tracks 
particles from the phase space plane through the multi-leaf collimator and the patient CT image to estimate the 
absorbed dose distribution.

However, phase space files are typically up to several tens of gigabytes large and inconvenient to use effi-
ciently. Statistical limitations may also arise when more particles are required than stored in the phase space file. 
Several virtual source models for linac beam modelling have been proposed in the literature. For example in Fix 
et al (2001), Grevillot et al (2011), the authors describe the statistical properties of the phase space distribution 
by analytical functions, by evaluating the dependence of the parameters and by adapted sampling procedures. 
Chabert et al (2016) used 4D correlated histograms with different adaptive binning schemes to represent an 
Elekta Synergy 6 MV photon beam. Recently, Brualla et al (2019) proposed a method to extract light-weight spec-
tra from large phase space files. This method may be sufficient for some applications, but may neglect correla-
tions between energy, position and direction and require adaptive binning. Overall, the proposed methods were  
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Abstract
A method is proposed and evaluated to model large and inconvenient phase space files used in Monte 
Carlo simulations by a compact generative adversarial network (GAN). The GAN is trained based 
on a phase space dataset to create a neural network, called Generator (G), allowing G to mimic the 
multidimensional data distribution of the phase space. At the end of the training process, G is stored 
with about 0.5 million weights, around 10 MB, instead of a few GB of the initial file. Particles are then 
generated with G to replace the phase space dataset.

This concept is applied to beam models from linear accelerators (linacs) and from brachytherapy 
seed models. Simulations using particles from the reference phase space on one hand and those 
generated by the GAN on the other hand were compared. 3D distributions of deposited energy 
obtained from source distributions generated by the GAN were close to the reference ones, with 
less than 1% of voxel-by-voxel relative difference. Sharp parts such as the brachytherapy emission 
lines in the energy spectra were not perfectly modeled by the GAN. Detailed statistical properties 
and limitations of the GAN-generated particles still require further investigation, but the proposed 
exploratory approach is already promising and paves the way for a wide range of applications.
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General conclusion Monte Carlo
• AI may (also) be useful with MC
• ARF, GAN for phase-space, …
• Faster, smoother, stronger

• Still experimental, currently under 
heavy investigations
• New challenges
• Learning dataset size ? 
• Learning time ?
• Convergence guarantee ?
• Final Accuracy ?
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