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Monte Carlo simulations

* Born during WW2

e Stanislaw Ulam, John von Neumann ... (Manhattan Project)
» Simulate radiation/particles transport

* MCin HEP and medical physics
* Heavily used in High Energy Physics (CERN)
 MedPhys: roots in the 70, imaging systems (SPECT, PET) and Radiation Therapy

* Nowadays in med phys:

e AIl TPS (Treatment Planning System) Y
 All PET, SPECT ; Total-Body PET projects (Explorer, etc) (\)



Monte Carlo simulations evolution

* More than 60 years of evolution

* More accurate physical databases

* More generic codes
(MCNPX, EGSNRC, Penelope, Geant4, Gate)

e Faster algorithms

* Use of powerful computing infrastructures
(cluster, GPU)

* However

* Increasing need for detailed and accurate physical
processing (TOF, SiPM, CZT, etc)

* Still with long simulations times (need VRT)

INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY
Phys. Med. Biol. 51 (2006) R287-R301 doi:10.1088/0031-9155/51/13/R17
REVIEW

Fifty years of Monte Carlo simulations for medical

physics”

D W O Rogers
Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada

E-mail: drogers@physics.carleton.ca

Received 23 February 2006, in final form 3 May 2006
Published 20 June 2006
Online at stacks.iop.org/PMB/51/R287

Abstract

Monte Carlo techniques have become ubiquitous in medical physics over the
last 50 years with a doubling of papers on the subject every 5 years between
the first PMB paper in 1967 and 2000 when the numbers levelled off. While
recognizing the many other roles that Monte Carlo techniques have played
in medical physics, this review emphasizes techniques for electron—photon
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Artificial Intelligence (A.l)

* A.l. methods, image processing (photos, video)
* Deep Learning, neural network

* Medical physics:
* Detection
* Auto segmentation
* Image generation (CT from MRI, CT from CBCT etc)
* Image enhancement (remove artefacts)
* Radiomics
e etc ...




Deep learning principle
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e Stepl: learn a model
* Input training database (large), composed of
numerous independent samples
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e Step2: use the model
* Get input data, apply the NN

DL: could it be useful for MC ?



Very short literature review

DL and dose estimation
* [Lee2019, G6tz2020, Roser2019, Nguyen2019, Liu2019]
* U-Net architecture, patch-based, predict dose
* Large dataset variation ?

DL for dose computation denoising

* [Peng2019, Fornander2019, Neph2019, Javaid2019,
Madrigal2018]

* Towards less particles to track during MC simulation
* Photon, proton dose. How to preserve dose gradient ?
e Towards GAN ?

DL for scatter modeling and correction reconstruction
e [Bvan der Heyden2020, Lee2019, Maier2018, Sharp202]
* U-Net, dense scatter estimation

DL for detector and source modelling
e [Sarrut2018, Sarrut2019, Zatcepin 2020, Sarrut2021]
* Depth-of-interaction resolution in pixellated PET detectors

Here: use of Deep Learning with Monte Carlo simulation

* Articles from 2018, 2019, 2020, 2021
e Evolving field
* |nvestigations, may not be ready for clinic yet

* Training dataset size?
* Training dataset variability?
e Generalisation to other cases types?



Examples of Al for Monte Carlo

 Examplel: learning Angular Response Function for SPECT simulation
* Example2: learning Phase-Space for photon beam characterisation

Deep learning within Monte Carlo simulation



Example 1:
learning ARF for
SPECT simulation



SPECT/CT imaging system

Rad injection 7
(*°™Tc) - + scintillator detector
(Nal, Csl, CZT)
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3D reconstruction (with CT)



SPECT Monte-Carlo simulation

* Long computation time
* Around 10 particles reaching detector
* Brute-force approach up to few days computation

* Platforms: R ey
 SImSET 'Harrison1993] 4 ¢
* SIMIND Ljungberg1989] , ¥
 GATE/Geant4 [Sarrut2014] | K




SPECT Monte-Carlo simulation

 Several proposed Variance Reduction Techniques (VRT) :

* GIS: Geometrical Importance Sampling Beenhouwer2009]

-[ARF: Angular Response Function] Song2005, Descourt2010, Rydeen2018]
* MPS: Multiple Projection Sampling Beenhouwer2008, Liu2008]

* CFD: Convolution Based Forced Detection Liu2008]

* FFD: Fixed Forced Detection (Cajgfinger2017]

scintillator crystal

gamma
photon \

scintillation
event

photosensor

[Braga2014]



Emitted Collimator Crystal

ARF: principles photons

| Detected

N

) ' . photons

* Angular Response Function
One count in
one energy
* Replace SPECT head detection window
with tabulated response
* Incident particle at ARF plane Emitted
use tables to get energy photons
windows probabilities | ~—_ Detection
ﬁ ) | || probability
e Assume: = 5 in all energy
o . 1| windows
* Spatially invariant |/ ~__
* Detection depends on !
direction + energy ARF plane
Image plane

(crystal midpoint)



ARF Replace histogram tables

by a neural network

* Advantages:
* ARF tables needed to be computed only once

* Variance reduction: probability instead of counts
 Efficient, speedup x20-100 [Song2005, Descourt2010]

* Drawbacks:
* ARF tables needed for every detector configurations
 Large dataset needed to compute tables, 108 to 10! [Rydeen2018]
e Choice of table binning (3D histogram) not clear
* Speedup not explicitly evaluated



Artificial neural network

 Learn a predictive model from a training dataset h(X) =%

* Training dataset:
simulation, large source, complete energy spectra,

complete detector (collimator/crystal) X = (E7 0, ¢)
108 to 10° particles + Russian Roulette

* Input space:
particles energy and direction at the collimator entrance

plane
Gives probability y; for an
h(E, 9, ¢) — yZ incoming photon to be detected

in the it" energy window



Artificial neural network architecture

~ 10° weights (2 MB)

* 3 hidden linear fully connected layers
* 400 neurons by layer
 Activation function: RelLu

* Loss function: multiclass cross-entropy

° Opﬁmisaﬁon: Adam [Klngm32014] @ nput Layer @ Hidden Layer @ Output Layer
(max 1000 iterations)

 Batch size: 5000 samples « = 0.0001 P Y T b R C
* Adaptive learning rate @2 Pie

NVIDIA




Results

e Simulation of 7
circular sources of
different energies

e Efficiency

1
Ep = ——=
txa,%

Speedup: 20 - 1000

ARF 4x10’

Analog 4x101°
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Results

25 days CPU
time with
1010
particles
VS

2.5 hours
with 4.10/
particles

(> x200)

lodine
source

e -
- .

Simulation SPECT
(profile)

ARF 4e7 + Poisson noise




Example 1: conclusion

» Alternative approach to ARF by histogram using Artificial Neural Network
 Similar efficiency, require less data to build, more consistent (binning)
* Different noise distribution, need to add Poisson noise

Available in GATE (open-source) www.opengatecollaboration.org

« Learning SPECT detector angular response function with
neural network for accelerating Monte-Carlo simulations »
D. Sarrut, N. Krah, JN. Badel, JM. Létang, Physics in Medicine
and Biology, 2018
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Abstract

A method to speed up Monte-Carlo simulations of single photon emission computed tomography
(SPECT) imaging is proposed. It uses an artificial neural network (ANN) to learn the angular
response function (ARF) of a collimator—detector system. The ANN is trained once from a complete
simulation including the complete detector head with collimator, crystal, and digitization process. In


http://www.opengatecollaboration.org/

Example 2:
learning Linac phase-space



Radiation Therapy Linac head simulation

|/
,,f' ~ Few photons exiting
g ‘ \\VRT (brem splitting)

Goal: determine beam characteristics
(energy, position, direction distributions) ’/ |



Phase Space (PHSP)

@ energy distribution (C)
» Store beam properties as Phase Space 7 9 l104
« A PHSP is a list of particles (around 1e8, 1e9) 5 80 .
* Properties: E, X, v, z, dx, dy, dz, w, (time) S 70 % .
60 [ 3
50 = ‘
* Advantages: whi e
« Computed only once sob L
* Fast to use 20 Mg, W 10
* Can be shared 10 i ml
et S 1

Energy (MeV)

* Drawback
* Several GB
* When a cluster is used, should be shared among workers
e Limited number of particles

Example of dependence of direction ¢ and energy



GAN: Generative Adversarial Network

[Goodfellow, 2014]
Goal: « learn » a multidimensional probability distribution

Random generation of high quality images

Well Trained

//
random ... ’
noise o ==
vector i

Initial application : Generator
d rtlfl Cld I Im ages 8e nerator Controlled image generation according to custom features
Well Trained
custom features:
_ . . male,
https.//www.th!spersondoesnc?teX|st.com i =
https://www.thiscatdoesnotexist.com glasses

https://youtu.be/2edOMMREazo?t=37 Generator
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GAN: Generative Adversarial Network

e Training dataset = € R?
 Dimensiond=7 (F,X,Y, 7, dX,dY,dZ)
e Samples of an unknown distribution Preal

* Generator G(z:;6¢) A —p

* Discriminator D(x;8p)




GAN: Generative Adversarial Network

e Training dataset = € R?
 Dimensiond=7 (F,X,Y, 7, dX,dY,dZ)
e Samples of an unknown distribution Preal

Neural network

L = BEPI —> 1|0

Alternate G and D optimisation updates



Loss function

* GAN notoriously difficult to train
 Alternative formulations: Wasserstein GAN [Arjovsky 2017]

* “Earth-mover” distance (EMD) : cost of the optimal transport
* Un-tracktable in practice, but approximated:

Jp (0p,0c) = E. [D(G(z))] — Ex [D(x)]
Ja (0p,0q) = —E.[D(G(2)))



Experiments

PHSP from IAEA web site

PHSP Size

Nb of particles

Elekta PRECISE 6MV 2 files of 3.9 GB
CyberKnife IRIS 60mm 2 files of 1.6 GB

1.3 x 10® photons each file
5.8 x 107 photons each file
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Results

Marginal distributions of
the 6 parameters
obtained from the
reference PHSP and from
the GAN, for Elekta 6MV
linac.
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Results LINAC head

PHSP plane

e Dose distribution in water from PHSP
108 primary photons
Beam

* Compare dose between:
1. PHSP1 vs PHSP2
2. PHSP1 vs GAN

* Voxel by voxel dose comparison Waterbox
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Results

7000 1

Distributions of relative 6000+

differences between
e PHSP1 and PHSP2 20007

[7p]
2 PHSP1 vs PHSP2 u=0.00%
[ ] C
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Vertical lines indicate
the mean differences
2000 A
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1000 -
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Example 2: conclusion

* Using GAN to represent a Phase-Space is feasible

* Final GAN model: few MB (vs PHSP = 4 GB)

» Sufficient for dose computation

* Training is difficult: hyperparameters, 511 keV pealk, ...

e Available in GATE www.opengatecollaboration.org

* Perspectives :
* Could it be learned from less particles ?
* Detailed statistical analysis in progress
* Other applications of GAN within MC simulations

« Generative Adversarial Networks (GAN) for compact
beam source modelling in Monte Carlo simulations »
D. Sarrut, N. Krah, JN. Badel, JM. Létang, Physics in
Medicine and Biology, 2019

\
Q a8 ’ opengatecollaboration.org

6" GEANT4

A SIMULATION TOOLKIT

I0P Publishing

@ CrossMark

RECEIVED
23 April 2019

REVISED
27 August 2019

ACCEPTED FOR PUBLICATION
30 August 2019

PUBLISHED
23 October 2019

Phys. Med. Biol. 64 (2019) 215004 (11pp) https://doi.org/10.1088/1361-6560/ab3fcl
H H 1Al H Institute of Physi d
Physics in Medicine & Biology % IPEM conecin eiene

PAPER

Generative adversarial networks (GAN) for compact beam source
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Abstract
A method is proposed and evaluated to model large and inconvenient phase space files used in Monte
Carlo simulations by a compact generative adversarial network (GAN). The GAN is trained based
on a phase space dataset to create a neural network, called Generator (G), allowing G to mimic the
multidimensional data distribution of the phase space. At the end of the training process, G is stored
with about 0.5 million weights, around 10 MB, instead of a few GB of the initial file. Particles are then
generated with G to replace the phase space dataset.

This concept is applied to beam models from linear accelerators (linacs) and from brachytherapy
seed models. Simulations using particles from the reference phase space on one hand and those
generated by the GAN on the other hand were compared. 3D distributions of deposited energy
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General conclusion

* Al may (also) be useful with MC
* ARF, GAN for phase-space, ...
* Faster, smoother, stronger

* Still experimental, currently under
heavy investigations

* New challenges
* Learning dataset size ?
* Learning time ?
* Convergence guarantee ?
* Final Accuracy ?

Monte .Carlo
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Thanks for your attention !
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