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The scalar sector of the standard model

2

degs of freedom 
all depends on the shape

Additional d.o.f. 
⟹ W and Z polarisation

Quantum of the field 
⟹ Higgs boson

v / √2

m2

H
= 2�v2 = 2µ2

The scalar sector properties are determined 
by the shape of the scalar potential

Two main sectors of the SM:


■ Gauge sector: electroweak and strong interactions 
explained with local gauge symmetries


■ Scalar sector: complex scalar doublet of fields and 
potential with VEV ≠ 0

□ spontaneous electroweak symmetry breaking 

(Brout-Englert-Higgs mechanism)


■ The scalar sector is a necessary element of the SM

□ W± and Z bosons masses


□ fermions masses via Yukawa interactions


□ regularises the theory at the TeV scale

V (�†�) = �µ2�†�+ �(�†�)2
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The Higgs boson…
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■ Observed by ATLAS and CMS in 2012


■ Mass precisely determined: 
mH = 125.09 ± 0.24 GeV


■ Precise study of its interactions with fermions and 
vector bosons…

24

125 GeV) = 2.76 GeV.

The 1s and 2s CL regions in the (M, e) fit are shown in Fig. 10 (left). The results of the fit
using the six parameter k model are plotted versus the particle masses in Fig. 10 (right), and
the result of the (M, e) fit is also shown for comparison. For the b quark, since the best fit point
for kb is negative, the absolute value of this coupling modifier is shown. In order to show both
the Yukawa and vector boson couplings in the same plot, a “reduced” vector boson couplingp

kVmV/v is shown.
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Figure 10: Likelihood scan in the M-e plane (left). The best fit point and the 1s and 2s CL
regions are shown, along with the SM prediction. Result of the phenomenological (M, e) fit
overlayed with the resolved k-framework model (right).

8.2 Generic model within k-framework with effective loops

The results of the fits to the generic k model where the ggH and H ! gg loops are scaled using
the effective coupling modifiers kg and kg are given in Fig. 11 and Table 8. In this parametriza-
tion, additional contributions from BSM decays are allowed for by rewriting the total width of
the Higgs boson, relative to its SM value, as,

GH

GSM
H

=
k2

H
1 � (Bundet + Binv)

, (7)

where kH is defined in Table 6.

Two different model assumptions are made concerning the BSM branching fraction. In the first
parametrization, it is assumed that BBSM = Binv + Bundet = 0, whereas in the second, Binv
and Bundet are allowed to vary as POIs, and instead the constraint |kW|, |kZ|  1 is imposed.
This avoids a complete degeneracy in the total width where all of the coupling modifiers can
be scaled equally to account for a non-zero Bundet. The parameter Bundet represents the total
branching fraction to any final state that is not detected by the channels included in this com-
bined analysis. The likelihood scan for the Binv parameter in this model, and the 2D likelihood
scan of Binv vs. Bundet are given in Fig. 12. The 68 and 95% CL regions for Fig. 12 (right) are
determined as the regions for which q(Bundet,Binv) < 2.28 and 5.99, respectively. The 95%
CL upper limits of Binv < 0.22 and Bundet < 0.38 are determined, corresponding to the value
for which q < 3.84 [106]. The uncertainty in the measurement of kt is reduced by nearly 40%

Yukawa interactions

Gauge 
interactions

EPJC 79 (2019) 421



February 18th, 2020Luca Cadamuro Exploring the Higgs boson self-coupling at the LHC
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Figure 10: Likelihood scan in the M-e plane (left). The best fit point and the 1s and 2s CL
regions are shown, along with the SM prediction. Result of the phenomenological (M, e) fit
overlayed with the resolved k-framework model (right).

8.2 Generic model within k-framework with effective loops

The results of the fits to the generic k model where the ggH and H ! gg loops are scaled using
the effective coupling modifiers kg and kg are given in Fig. 11 and Table 8. In this parametriza-
tion, additional contributions from BSM decays are allowed for by rewriting the total width of
the Higgs boson, relative to its SM value, as,

GH

GSM
H

=
k2

H
1 � (Bundet + Binv)

, (7)

where kH is defined in Table 6.

Two different model assumptions are made concerning the BSM branching fraction. In the first
parametrization, it is assumed that BBSM = Binv + Bundet = 0, whereas in the second, Binv
and Bundet are allowed to vary as POIs, and instead the constraint |kW|, |kZ|  1 is imposed.
This avoids a complete degeneracy in the total width where all of the coupling modifiers can
be scaled equally to account for a non-zero Bundet. The parameter Bundet represents the total
branching fraction to any final state that is not detected by the channels included in this com-
bined analysis. The likelihood scan for the Binv parameter in this model, and the 2D likelihood
scan of Binv vs. Bundet are given in Fig. 12. The 68 and 95% CL regions for Fig. 12 (right) are
determined as the regions for which q(Bundet,Binv) < 2.28 and 5.99, respectively. The 95%
CL upper limits of Binv < 0.22 and Bundet < 0.38 are determined, corresponding to the value
for which q < 3.84 [106]. The uncertainty in the measurement of kt is reduced by nearly 40%

… and its self-coupling
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■ Observed by ATLAS and CMS in 2012


■ Mass precisely determined: 
mH = 125.09 ± 0.24 GeV


■ Precise study of its interactions with fermions and 
vector bosons…

λHHH : direct access to the shape of the scalar potential

Direct test of the EW symmetry breaking

■ … but self-interactions not measured experimentally!


V (H) =
1

2
m

2

H
H

2 + �HHHvH
3 +

1

4
�HHHHH

4 � �

4
v
4

�HHH = �HHHH = � =
m2

H

2v2
⇡ 0.13

or
p

k �
m

H v

H

Self 
interaction?

EPJC 79 (2019) 421
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Why is it important?
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■ The modification of the shape of the scalar potential at high scales makes the EW vacuum metastable


■ The stability of the potential at high has an impact of the possible role of the Higgs boson as the 
inflaton in the primordial Universe
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Figure 4: Measured value of the top mass and preferred range of mh, compared to the regions cor-

responding to absolute stability, meta-stability and instability of the SM vacuum. The three bound-

aries lines corresponds to ↵s(MZ) = 0.1184 ± 0.0007, and the grading of the colors indicates the

size of the theoretical errors. The dotted contour-lines show the instability scale ⇤ in GeV assuming

↵s(MZ) = 0.1184.

Data indicate that we live close to this boundary, which corresponds to the intriguing

possibility of a vanishing Higgs coupling (and perhaps also its beta function) at the Planck

scale — a possibility discussed in previous papers with di↵erent motivations, see e.g. [12,21–25].

Note however, that the present experimental situation is only marginally compatible with the

realization of such scenario. If there is indeed a potential instability below the Planck scale, the

minimal scenario of Higgs inflation [26] (which already su↵ered from a unitarity/naturalness

problem [27]) cannot be realized and one would be lead to nonminimal options that should

cure, not only the unitarity problem [28] but also the instability (a potential threat to scenarios

such as those proposed in ref. [29]).

2.1 Meta-stability

The fact that the Higgs potential develops a new deeper minimum does not necessarily mean

that the situation is inconsistent, because our Universe could live in a metastable vacuum.

As shown in fig. 1, the evolution of � for 124GeV < mh < 126GeV is such that it never

becomes too negative, resulting in a very small probability of quantum tunneling. Updating

and yt(mt) in terms of mh, mt and the other SM couplings. In particular, the leading error is induced by

the unknown two-loop finite corrections in the determination of �(mt). Estimating the size of these e↵ects by

varying the matching scale on �(µ) in the range mt/2 < µ < 2mt leads to ±2 GeV in mh. The ±0.5 GeV

theoretical error [20] in the relation between the measured value ofmt and yt(mt) leads to an additional ±1 GeV.

Summing linearly these two errors leads to the final error in eqs. (3) and (4).

6

PLB 709 (2012) 222
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Figure 1: RG evolution of the Higgs self coupling, for di↵erent Higgs masses for the central value of mt

and ↵s, as well as for ±2� variations of mt (dashed lines) and ↵s (dotted lines). For negative values

of �, the life-time of the SM vacuum due to quantum tunneling at zero temperature is longer than the

age of the Universe as long as � remains above the region shaded in red, which takes into account the

finite corrections to the e↵ective bounce action renormalised at the same scale as � (see [11] for more

details).

2 Stability and metastability bounds

We first present the analysis on the Higgs instability region at zero temperature. We are

concerned with large field field values and therefore it is adequate to neglect the Higgs mass

term and to approximate the potential of the real field h contained in the Higgs doublet H =

(0, v + h/
p
2) as

V = �(|H|
2
� v

2)2 ⇡
�

4
h
4
. (1)

Here v = 174 GeV and the physical Higgs mass is mh = 2v
p
� at tree level. Our study here

follows previous state-of-the-art analyses (see in particular [9, 11, 12]). We assume negligible

corrections to the Higgs e↵ective potential from physics beyond the SM up to energy scales of

the order of the Planck mass. We include two-loop renormalization-group (RG) equations for all

the SM couplings, and all the known finite one and two-loop corrections in the relations between

3

PLB 709 (2012) 222

The shape of the scalar potential is linked to many open questions of particle physics and cosmology
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λHHH : how measure it?

■ Use the production of two Higgs bosons to 
probe λHHH

□ direct measurement: theoretically clean

□ very rare process ⟹ experimentally 

challenging

6

Two complementary strategies exist:

Indirect 
measurements 
in single H
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Figure 1. First row: Leading-order contribution to Higgs-boson production via gluon-gluon fusion
and contribution from heavy quark resonances to the same process; Second row: Leading contributions
to the Higgs decay into two photons, given by a top-quark loop and a W±-boson loop, as well as
contributions from heavy fermion resonances to the same process.

The rotations to the mass basis will be in analogy to (2.6), but now featuring larger

matrices. We will resort to numerical methods for these diagonalizations in the following.

Note that, if we are only interested in sums of ratios of Higgs couplings over masses, we

can arrive at simple analytical expressions, avoiding the diagonalization procedure, see

Section 3.

The couplings of the fermions to the Higgs boson are now given by

Lh =
X

f=E,Y

 ̄f10 (0)
L gf(0)h10  

f10 (0)
R h+ h.c. , (2.17)

where
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3
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2
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3
)T , (2.18)

and

gf(0)h10 =
@Mf

@v
, (2.19)

with f = E, Y . After rotating to the diagonal mass basis, the Higgs-coupling matrices

become

gfh10 = Uf10†
L gf(0)h10 U

f10
R . (2.20)

3 Higgs Production and Decay

3.1 General Structure

The presence of the new resonances has significant implications on the production and

decay of the Higgs boson, which will be worked out in this section. The most important

production mechanism for the Higgs boson at hadron colliders is gluon-gluon fusion, which

in the SM receives its main contribution from a top-quark triangle loop, with a large

coupling to the Higgs, see the leftmost diagram in Figure 1. In extensions of the SM this
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The rotations to the mass basis will be in analogy to (2.6), but now featuring larger

matrices. We will resort to numerical methods for these diagonalizations in the following.

Note that, if we are only interested in sums of ratios of Higgs couplings over masses, we

can arrive at simple analytical expressions, avoiding the diagonalization procedure, see

Section 3.
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Figure 1. First row: Leading-order contribution to Higgs-boson production via gluon-gluon fusion

and contribution from heavy quark resonances to the same process; Second row: Leading contributions

to the Higgs decay into two photons, given by a top-quark loop and a W±-boson loop, as well as

contributions from heavy fermion resonances to the same process.
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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ŝ

)

,

(5)

wit
h ŝ a
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
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3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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ŝ

)

,

(5)

with
ŝ and

t̂ de
noti

ng the
part

onic
Mande

lstam
varia

bles
. Th

e tri
angu

lar a
nd box

form

facto
rs F#

, F!
and

G!
appr

oach
cons

tant
valu

es in
the

infin
ite t

op quar
k mass l

imit,

F#
→

2
3
,

F!
→ −

2
3
,

G!
→ 0 .

(6)

The
expr

essio
ns w

ith the
com

plet
e mass d

epen
denc

e ar
e rat

her
leng

thy
and

can
be fo

und

in Ref.
[11]

as w
ell a

s th
e NL

O QCD
corr

ectio
ns in

the
LET

appr
oxim

atio
n in Ref.

[18].

The
full

LO
expr

essio
ns for

F#
, F!

and
G!

are
used

whe
reve

r they
appe

ar in the

NLO
corr

ectio
ns in

orde
r to

improv
e the

pert
urba

tive
resu

lts,
similar

to wha
t ha

s be
en

done
in the

sing
le H

iggs
prod

ucti
on case

whe
re u

sing
the

exac
t LO

expr
essio

n redu
ces t

he

disa
gree

ment
betw

een
the

full
NLO

resu
lt an

d the
LET

resu
lt [7

, 19]
.

For
the

num
erica

l eva
luat

ion
we have

used
the

pub
licly

avai
lable

code
HPA

IR [44]
in

whic
h the

know
n NLO

corr
ectio

ns a
re implem

ente
d. As a

cent
ral s

cale
for t

his p
roce

ss

6

*

λ
g�

g
*

gmin

1

0
4π

λ = √gmin g*
─

λ = gmin

FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.

g

g h

h

t

g

g h

h

t
h

g

g h

h

t

g

g h

h

h

g

g h

h

FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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The Large Hadron Collider

7

■ The CERN LHC is designed to deliver pp collisions at √s = 14 TeV and 𝓛 = 1034 cm-2 s-1 


■ Design instantaneous luminosity exceeded throughout the Run 2 operations at √s = 13 TeV!


■ Broad program of H and HH measurements with the ATLAS and CMS experiments
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HH production at the LHC
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■ Gluon fusion: dominant production mode

□ about 4300 HH events in the Run 2 datasets


■ Tiny cross section : experimentally very 
challenging!
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derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each
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p
ŝ = mhh � mt, mh. We
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EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each
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Extracting λHHH from HH measurements

■ Information on λHHH is obtained from both the 
total and the differential production cross section

9
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ŝ

)

,

(5)

with
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ŝ
and

t̂
denoting

the
partonic

M
andelstam

variables.
T
he

triangular
and

b
ox

form

factors
F
#
,
F
!
and

G
!
approach

constant
values

in
the

infinite
top

quark
m
ass

lim
it,

F
#
→

23 ,
F
!
→

−
23 ,

G
!
→

0
.

(6)

T
he

expressions
w
ith

the
com

plete
m
ass

dep
endence

are
rather

lengthy
and

can
b
e
found

in
R
ef.

[11]
as

w
ell

as
the

N
L
O

Q
C
D

corrections
in

the
L
E
T
approxim

ation
in

R
ef.

[18].

T
he

full
L
O

expressions
for

F
#
, F

!
and

G
!
are

used
w
herever

they
app

ear
in

the

N
L
O

corrections
in

order
to

im
prove

the
p
erturbative

results,
sim

ilar
to

w
hat

has
b
een

done
in

the
single

H
iggs

production
case

w
here

using
the

exact
L
O
expression

reduces
the

disagreem
ent

b
etw

een
the

full
N
L
O

result
and

the
L
E
T
result

[7, 19].

For
the

num
erical

evaluation
w
e
have

used
the

publicly
available

code
HPAIR

[44]
in

w
hich

the
know

n
N
L
O

corrections
are

im
plem

ented.
A
s
a
central

scale
for

this
process

6

(a)
gg

double-H
iggs

fusion:
gg

→
H
H

H

H
H

g

g
Q

H

H

g

g
Q

(b)
W

W
/Z

Z
double-H

iggs
fusion:

qq ′→
H
H
qq ′

q

q ′

q

q ′

V
∗V
∗

HH

(c)
D
ouble

H
iggs-strahlung:

qq̄ ′→
Z
H
H
/W

H
H

q

q̄ ′
V
∗

V

HH

g

g
t̄

t
HH

q

q̄
g

(d)
A
ssociated

production
w
ith

top-quarks:
qq̄/gg

→
t̄tH

H

F
igure

1:
Som

e
generic

F
eynm

an
diagram

s
contributing

to
H
iggs

pair
production

at
hadron

colliders.

w
here

t̂
±
=
−
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
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ŝ

2

(

1− 2
M2

H

ŝ
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
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g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
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ŝ

)

, (5)
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2

(

1−
2 M
2
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ŝ
∓
√

1−
4M2

H

ŝ
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Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
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ŝ and

t̂ de
noti

ng the
part

onic
Mande

lstam
varia

bles
. Th

e tri
angu

lar a
nd box

form

facto
rs F#

, F!
and

G!
appr

oach
cons

tant
valu

es in
the

infin
ite t

op quar
k mass l

imit,

F#
→

2
3
,

F!
→ −

2
3
,

G!
→ 0 .

(6)

The
expr

essio
ns w

ith the
com

plet
e mass d

epen
denc

e ar
e rat

her
leng

thy
and

can
be fo

und

in Ref.
[11]

as w
ell a

s th
e NL

O QCD
corr

ectio
ns in

the
LET

appr
oxim

atio
n in Ref.

[18].

The
full

LO
expr

essio
ns for

F#
, F!

and
G!

are
used

whe
reve

r they
appe

ar in the

NLO
corr

ectio
ns in

orde
r to

improv
e the

pert
urba

tive
resu

lts,
similar

to wha
t ha

s be
en

done
in the

sing
le H

iggs
prod

ucti
on case

whe
re u

sing
the

exac
t LO

expr
essio

n redu
ces t

he

disa
gree

ment
betw

een
the

full
NLO

resu
lt an

d the
LET

resu
lt [7

, 19]
.

For
the

num
erica

l eva
luat

ion
we have

used
the

pub
licly

avai
lable

code
HPA

IR [44]
in

whic
h the

know
n NLO

corr
ectio

ns a
re implem

ente
d. As a

cent
ral s

cale
for t

his p
roce

ss

6

(a) gg double-Higgs fusion: gg → HH

H

H

H

g

g

Q

H

Hg

g

Q

(b) WW/ZZ double-Higgs fusion: qq′ → HHqq′

q

q′

q

q′

V ∗

V ∗

H
H

(c) Double Higgs-strahlung: qq̄′ → ZHH/WHH

q

q̄′ V ∗

V

H

H

g

g

t̄

t
H
H

q

q̄
g

(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.

where

t̂± = −
ŝ
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ŝ

)

, (5)

with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process

6

(a)
gg

double-H
iggs

fusion:
gg

→
H
H

H

H
H

g

g
Q

H

H

g

g
Q

(b)
W

W
/Z

Z
double-H

iggs
fusion:

qq ′→
H
H
qq ′

q

q ′

q

q ′

V
∗V
∗

HH

(c)
D
ouble

H
iggs-strahlung:

qq̄ ′→
Z
H
H
/W

H
H

q

q̄ ′
V
∗

V

HH

g

g
t̄

t
HH

q

q̄
g

(d)
A
ssociated

production
w
ith

top-quarks:
qq̄/gg

→
t̄tH

H

F
igure

1:
Som

e
generic

F
eynm

an
diagram

s
contributing

to
H
iggs

pair
production

at
hadron

colliders.

w
here

t̂
±
=
−
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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ŝ
∓
√

1−
4M2

H

ŝ
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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ŝ ∓
√

1− 4M 2
H

ŝ
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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ŝ

)

, (5)
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(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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ŝ
∓
√

1−
4M2

H

ŝ
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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Illustration of shape effects

10

Interference effects have important consequences for the sensitivity of the searches
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HH : which decay channels?

11

■ Phenomenologically rich set of final states


■ Branching fraction and S/B largely vary 
across channels


■ Common analysis techniques (e.g. H→bb 
reconstruction) and channel-specific 
challenges


■ Broad study ongoing by the ATLAS and 
CMS Collaborations

Keep 𝓑 high enough
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Trade-off 
between 𝓑 
and purity 
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rarer

A rich program of physics can be investigated with 
HH, including BSM searches (extended scalar sectors, 
extra dimensions, …) with resonant production 
(X→HH) in a large mX range up to few TeV.
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High 𝓑, low S/B : HH → bbbb

■ ATLAS: from a anti-b tag 
region. Use a sideband 
for the estimation and a 
control region for the 
validation

12

8.1 The hemisphere mixing technique 9
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Figure 2: An illustration of the hemisphere mixing procedure. The transverse thrust axis is
defined as the axis on which the sum of the absolute values of the projections of the pT of
the jets is maximal. Once the thrust axis is identified, the event is divided into two halves by
cutting along the axis perpendicular to the transverse thrust axis. One such half is called a
hemisphere (h). In a preliminary step, each event in the original N-event data set is split into
two hemispheres that are collected in a library of 2N hemispheres. Once the library is created,
each event is used as a basis for creating artificial events. These are constructed by picking two
hemispheres from the library that are similar to the two hemispheres that make up the original
event.

are similar, according to a measure defined below, to the two hemispheres that make up the
original event. An illustration of the procedure can be found in Fig. 2.

The number of jets N
h

j and number of b-tagged jets N
h

b in each hemisphere, together with four
jet-related variables, are used to define a hemisphere similarity criterion. The four variables
are the combined invariant mass of all jets contained in the hemisphere M

h
tot, transverse thrust

of the hemisphere T
h, the scalar sum of the projections of the pT of all the jets onto the axis

orthogonal to the thrust axis on the transverse plane, T
h
a , the projection of the vectorial sum of

the momenta of the jets along the beam axis, Sp
h
z . If we label the original hemisphere o, and q

the one in the library that is compared to o, the number of jets in o and q is required to be equal,
N

o

j = N
q

j , and also the number of b-tagged jets are required to be equal, N
o

b = N
q

b. These two
requirements are used to maintain the topology of the original events and to avoid introducing
events that would not pass the selection described in Section 7 (e.g. by combining a hemisphere
with 2 jets with a hemisphere with 1 jet, resulting in an event with 3 jets). The requirement for
equal numbers of jets is waived for the infrequently occurring pairs of hemispheres that both
have at least four jets and at least four b-tagged jets. For each hemisphere q in the library
fulfilling the above criteria, a multidimensional distance from hemisphere o is computed using
the four jet-related variables, as follows:

D(o, q)2 =
(M

o
tot � M

q

tot)
2

V(Mtot)
+

(To � T
q)2

V(T)
+

(To
a � T

q

a )2

V(Ta)
+

(|Sp
o
z|� |Sp

q

z|)2

V(Spz)
. (3)

In the equation above, V(x) represents the variance for the variable x, within the subset of
events of given Nb and Nj characterizing the hemisphere in question. Once all D(o, q) are
computed, the kth nearest-neighbour hemisphere in the library, with k � 1 (i.e. the one such

Event selection

 [GeV]lead
2jm

60 80 100 120 140 160 180 200

 [G
eV

]
su

bl
2j

m

60

80

100

120

140

160

180

200

2
Ev

en
ts

 / 
25

 G
eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16Simulation ATLAS

Resolved, 2016

-1 = 13 TeV, 24.3 fbs

(a) SM non-resonant HH

 [GeV]lead
2jm

60 80 100 120 140 160 180 200

 [G
eV

]
su

bl
2j

m

60

80

100

120

140

160

180

200

2
Ev

en
ts

 / 
25

 G
eV

0

20

40

60

80

100

120

140

160

180

200

220ATLAS

Resolved, 2016

-1 = 13 TeV, 24.3 fbs

(b) Multijet Background

Figure 1: Higgs boson candidate mass-plane regions. The signal region is inside the inner (red) dashed curve, the
control region is outside the signal region and within the intermediate (orange) circle, the sideband is outside the
control region and within the outer (yellow) circle. (a) shows the SM non-resonant HH process, and (b) shows the
estimated multijet background, which is described in Section 5.2.
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(b) Spin-2 Signal
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Figure 2: The selection acceptance times e�ciency at each stage of the event selection for (a) a narrow-width scalar
and (b) GKK ! HH ! bb̄bb̄ with k/MPl = 1 for a range of resonance masses and (c) the SM non-resonant signal.
Each selection step is detailed in Section 5.1.

9

■ Four b jets: crucially relies on 
tagging performance since trigger


■ Use H→bb signature to reject the 
backgrounds

Multijet background estimation with data-driven methods

■ CMS: “hemisphere 
mixing” to build 
background events 
from recorded data
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(a) 2015 dataset
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Figure 3: Distributions of m4j in the control region of the resolved analysis for (a) 2015 data and (b) 2016 data,
compared to the predicted backgrounds. The hatched bands represent the statistical uncertainties. The expected
signal distributions of GKK resonances with masses of 800 and 1200 GeV, a 280 GeV scalar particle and SM
non-resonant HH production (⇥100) are also shown. The scalar sample is normalized to a cross section times
branching ratio of 2.7 pb.

5.3 Systematic uncertainties

Background uncertainties are propagated from the fit which determines the multijet and tt̄ yields. The
statistical uncertainties in the scale factors (Table 1) are propagated including the correlations, by cal-
culating three orthogonal eigenvariations from the covariance matrix of the normalization fit, resulting
in three nuisance parameters, such that each parameter acts on the three background normalizations
simultaneously.

Shape uncertainties in the multijet background are assessed by deriving an alternative background model
using the same procedure as in the nominal case, but using data from the control region rather than from
the sideband. This alternative model and the baseline are consistent with the observed data in their regions
and with each other. The di�erences between the baseline and the alternative are used as a background-
model shape uncertainty, with a two-sided uncertainty defined by symmetrizing the di�erence about the
baseline. The uncertainty is split into two components to allow two independent variations: a low-HT
and a high-HT component, where HT is the scalar sum of the pT of the four jets constituting the Higgs
boson candidates. The boundary value is 300 GeV. The low-HT shape uncertainty primarily a�ects the
m4j spectrum below 400 GeV (close to the kinematic threshold) by up to 5%, and the high-HT uncertainty
mainly m4j above this by up to 30% relative to nominal.

Shape uncertainties a�ecting the tt̄ background component are dominated by those associated with the
use of two-tag simulation to model the m4j distribution of hadronic tt̄. Since this background is also
reweighted, its uncertainties can be assessed using the same procedure as for the multijet background and
are again split into low-HT and high-HT components. The impact of detector and theoretical modelling
uncertainties on the tt̄ background shape were assessed but are found to be negligible, because the data-

12
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High 𝓑, low S/B : HH → bbbb

■ Kinematic properties used to 
suppress the huge multijet 
background


■ Discrimination based on jet 
angles, pT, b tagging scores, 
invariant masses

□ ATLAS: selections on kinematic 

variables + fit on mHH

□ CMS: variables combined into a 

BDT used for signal extraction

13
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Figure 4: Distributions of m4j in the signal region of the resolved analysis for (a) 2015 data and (b) 2016 data,
compared to the predicted backgrounds. The hatched bands represent the combined statistical and systematic
uncertainties in the total background estimates. The expected signal distributions of GKK resonances with masses
of 800 and 1200 GeV, a 280 GeV scalar sample and SM non-resonant HH production (⇥100) are also shown. The
scalar sample is normalized to a cross section times branching ratio of 2.7 pb.

6 Boosted analysis

The boosted analysis is optimized to discover signals arising from production of high-mass resonances
decaying into Higgs boson pairs. The strategy is to select two Higgs boson candidates with mass near mH ,
each composed of a single large-R jet with at least one b-tagged track-jet matched to it. Three samples are
defined according to the total number of b-tagged track-jets associated with the Higgs boson candidates.
Since the triggers are fully e�cient for the signal processes in both the 2015 and the 2016 datasets, the
two datasets are combined into one.

The invariant mass of the two-Higgs-boson-candidate system, m2J, is used as the final discriminant
between Higgs boson pair production and the SM backgrounds. Events that pass the resolved signal
region selection are vetoed in the boosted analysis, thus priority is given to the resolved analysis if an
event passes both selections, which increases the sensitivity.

6.1 Selection

Events are required to have a primary vertex with at least two tracks matched to it. Events are selected
that have at least two anti-kt large-R jets with pT > 250 GeV, |⌘ | < 2.0, and mass mJ > 50 GeV.
Only the two jets with highest pT are retained for further selection. The leading jet is required to have
pT > 450 GeV, which ensures 100% trigger e�ciency. Since high-mass resonances tend to produce jets
that are more central than those from multijet background processes, the two large-R jets are required to
have a separation |�⌘ | < 1.7. To be considered as a Higgs boson candidate, each large-R jet must contain
at least one b-tagged R = 0.2 track-jet matched to it by ghost association.
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Figure 7: Results of the fit to the BDT distribution for the SM HH production signal. In the bot-
tom panel a comparison is shown between the best fit signal and best fit background subtracted
from measured data. The band, centred at zero, shows the total uncertainty.
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Figure 8: Post-fit distribution of MH1 (left) and MH2 (right). Bias correction for the background
model is applied by rescaling the weight of each event using the event yield ratio between
corrected and uncorrected BDT distributions.

Obs. (Exp.) : 12.9 (21) ⨉ σHHSM Obs. (Exp.) : 74.6 (36.9) ⨉ σHHSM

Separation from the multĳet background is essential
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Medium 𝓑, medium S/B : HH → bb𝜏𝜏

14

𝜏h 

pTmiss

b jet

μ,e,𝜏h  

2 b jets
𝜏𝜏 → μνμν𝜏 𝜏hν𝜏 [𝜏μ𝜏h] 
𝜏𝜏 → eνeν𝜏 𝜏hν𝜏  [𝜏e𝜏h] 
𝜏𝜏 → 𝜏hν𝜏 𝜏hν𝜏   [𝜏h𝜏h]

■ Three 𝜏𝜏 final states


□ 𝜏μ𝜏h, 𝜏e𝜏h, 𝜏h𝜏h : 88% of 𝜏𝜏 decays


■ Challenge of triggering for the fully 
hadronic final state


■ Mass of the 𝜏𝜏 system reconstructed 
with a likelihood method

□ used to suppress the backgrounds
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simulation + 
data-driven 
estimate

simulation

Medium 𝓑, medium S/B : HH → bb𝜏𝜏

15

genuine b jet 
(e.g. from t → bW)

prompt from 
t → bW →bℓ𝜈

mis-ID 
hadron jet

mis-ID light 
flavour jet

■ Irreducible backgrounds 

□ tt → bbWW → bb 𝜏𝜏 


□ di-boson, ZH (minor)


□ Z/𝛾* → 𝜏𝜏 + 2 b jets


■ Instrumental (reducible) 
backgrounds


□ tt, Z/𝛾*, multijet with 
misidentified jets as 𝜏h or b jet


□ single top, W+jets (minor)

simulation
simulation + 
correction in 
Z→𝜇𝜇
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Medium 𝓑, medium S/B : HH → bb𝜏𝜏

16

■ Sophisticated 
variables based 
on the kinematics 
are used to look 
for a signal


■ Sensitivity 
dominated by 
fully hadronic 
categories

12 8 Results
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Figure 4: Distributions of the events observed in the signal regions of the thth final state. The
first, second, and third rows show the resolved 1b1j, 2b, and boosted regions, respectively. Pan-
els in the left column show the distribution of the m

KinFit
HH variable and panels in the right column

show the distribution of the mT2 variable. Data are represented by points with error bars and
expected signal contributions are represented by the solid (BSM HH signals) and dashed (SM
nonresonant HH signal) lines. Expected background contributions (shaded histograms) and
associated systematic uncertainties (dashed areas) are shown as obtained after the maximum
likelihood fit to the data under the background-only hypothesis. The background histograms
are stacked while the signal histograms are not stacked.
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Fit the output of a BDT 
Obs. (Exp.) : 12.5 (15) ⨉ σHHSM

Use the mT2 variable 
Obs. (Exp.) : 31.4 (25.1) ⨉ σHHSM
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Low 𝓑, high S/B : HH → bb𝛾𝛾
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Maximisation of acceptance 
and purity is essential 

Very rare but clean channel
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■ Main backgrounds: 𝛾/𝛾𝛾 + jets continuum, single H


■ Dedicated MVAs for background suppression

□ Deep NN against ttH

□ BDT against nonresonant 𝛾(𝛾) + jet (uses object 

kinematics, ID, resolution)


■ Event classification based on the MVA purity and 
the HH invariant mass

□ ggF: 3 MVA categories ⨉ 4 mHH categories 

□ VBF: 2 categories for low and high mHH


□ ATLAS: simpler categorisation by number of b jets
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Low 𝓑, high S/B : HH → bb𝛾𝛾
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Figure 4: For the non-resonant analysis, data (black points) are compared with the background-only fit (blue solid
line) for m�� in the 1-tag (left) and 2-tag (right) categories with the loose (top) and tight (bottom) selections. Both
the continuum �� background and the background from single Higgs boson production are considered. The lower
panel shows the residuals between the data and the best-fit background.

±1� and ±2� uncertainty bands around the expected limit in Figure 6(b). The limits are calculated using
the asymptotic approximation [83] for the profile-likelihood test statistic. Fixing all other SM parameters
to their expected values, the Higgs boson self-coupling is constrained at 95% CL to �8.2 < � < 13.2
whereas the expected limits are �8.3 < � < 13.2.

16

■ Powerful signature from 
the H→𝛾𝛾 decay used 
to search for a signal


■ Sensitivity clearly 
dominated by the 
limited event statistics

Obs. (Exp.) : 20.3 (26) ⨉ σHHSM
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Using the full Run 2 dataset : bbZZ (4𝓁)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
BDT score

4−10

3−10

2−10

1−10
1

10

210

310

410

510

610

En
tri

es
 / 

bi
n

 (13 TeV)-1137 fb
CMS
Preliminary

4l→ZZ→gg
4l→ZZ→qq

SM Higgs
ttV where V = Z, W
VVV where V = Z, W
Z+X
Data

4l signalbb→HH

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 10
1
2
3

 B
kg

.
Σ

D
at

a/

100 110 120 130 140 150 160 170 180
 (GeV)4lm

0

10

20

30

40

50

60

 E
ve

nt
s/

4 
G

eV  4l→ ZZ →gg 
 4l→ ZZ → qq

SM Higgs
ttV where V=Z,W
VVV where V=Z,W
Z+X
Data

4l x100b b→HH 

 (13 TeV)-1137 fb

CMS
Preliminary

100 110 120 130 140 150 160 170 180
 (GeV)4lm

0

0.5

1

1.5

2

 B
kg

.
Σ

D
at

a/

Signal region defined by 
the mass peak

■ First study of this final state 
at the LHC


■ Very rare BR (0.0145%) but 
very small backgrounds + 
clean signature from the 4𝓁 
peak


■ Signal extracted with a BDT

□ uses pT, angles, inv. masses, 

b tag scores 

95% CL upper limit 
30 (37) ⨉ SM

The full Run 2 dataset enables the 
exploration of very rare channels
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■ The combined results benefits from the similar  
sensitivity in several channels
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Approaching a sensitivity of 10 ⨉ σSM 
with the 2016 dataset only

Full Run 2 dataset (⨉4 more data) current under analysis 
⨉2 more sensitive (from stat.) + analysis improvements
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Combination of the results

■ Impact of the changes in the mHH spectrum clearly visible in the shape of the upper limits

21

SMλ/HHHλ=λk
20− 15− 10− 5− 0 5 10 15 20

H
H

) [
fb

]
→

(p
p

σ

500

1000

1500

2000

2500

3000

3500
CMS  (13 TeV)-135.9 fb

95% CL upper limits
Observed
Median expected
68% expected
95% expected

Theoretical Prediction

SM

20− 15− 10− 5− 0 5 10 15 20
λκ

2−10

1−10

1

10

 H
H

) [
pb

]
→

 (p
p 

gg
F

σ

at 95% CL
 intervalλκAllowed 

Obs.               Exp.
                 (Exp. stat.)

 12.0−-5.0 ⎜  12.0−-5.8 
 11.5)−(-5.3 

SM

ATLAS

-127.5 - 36.1 fb
 = 13 TeVs

Exp. 95% CL limits

Obs. 95% CL limits

bbbb

-τ+τbb

γγbb

Comb.

 (exp.)σ1±Comb. 

 (exp.)σ2±Comb. 

Theory prediction

Observed: 
Expected:

-5.0 < κλ < 12 
-5.8 < κλ < 12

-11.8 < κλ < 18.8 
-7.1 < κλ < 13.6

Observed: 
Expected:



February 18th, 2020Luca Cadamuro Exploring the Higgs boson self-coupling at the LHC

Benefiting of the Run 2 dataset
■ The bb𝛾𝛾 alone achieves a larger sensitivity to 

than the 2016 combinations of 4-6 channels

□ simple lumi scaling of the CMS 2016 bb𝛾𝛾 result: 

  
⟹ almost ⨉2 improvement
18.8 × 36/137 = 9.6 × SM

22
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Figure 10: Expected and observed 95% CL upper limits on the product of the HH production
cross section and B(HH ! ggbb) obtained for different values of kl assuming kt = 1. The
green and yellow bands represent, respectively, the one and two standard deviation extensions
beyond the expected limit. The red line shows the theoretical prediction.

categories help to remove the degeneracy in the global minimum.
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Figure 11: Negative log-likelihood as a function of kl evaluated with an Asimov data set as-
suming the SM hypothesis (left) and the observed data (right) are shown. The 68 and 98% CL
intervals are shown with the dashed gray lines. The two curves are shown for the HH (blue)
and HH + ttH (orange) analysis categories. All other couplings are set to their SM values.

The HH and single Higgs boson production cross sections depend not only on kl, but also on
kt . To better constrain the kl and kt coupling modifiers, a 2D negative log-likelihood scan in the
(kl, kt ) plane is performed, taking into account the modification of the production cross sections
and B(H ! bb), B(H ! gg) for anomalous (kl, kt ) values [23]. The modification of the single
H production cross section for anomalous kl is modeled at NLO, while the dependence on kt
is parametrized at LO only, neglecting NLO effects. This approximation holds as long as the
value of |kt | is close to unity, roughly in the range 0.7 < kt < 1.3. The parametric model is not

Excellent prospects for the full Run 2 
legacy results and beyond

Larger datasets enable smarter analyses 
 

Improvement in the sensitivity beyond the 
simple luminosity increase 

7.7 (5.2) ⨉ SM

Observed: 
Expected:

-3.3 < κλ < 8.5 
-2.5 < κλ < 8.2
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Beyond gluon fusion
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(a) gg double-Higgs fusion: gg → HH
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(b) WW/ZZ double-Higgs fusion: qq′ → HHqq′
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(c) Double Higgs-strahlung: qq̄′ → ZHH/WHH
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(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.

where

t̂± = −
ŝ

2

(

1− 2
M2

H

ŝ
∓
√

1−
4M2

H

ŝ

)

, (5)

with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
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ŝ
∓
√

1−
4M2

H

ŝ
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ŝ
2

(

1− 2
M

2
H

ŝ
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ŝ and

t̂ de
noti

ng the
part

onic
Mande

lstam
varia

bles
. Th

e tri
angu

lar a
nd box

form

facto
rs F#

, F!
and

G!
appr

oach
cons

tant
valu

es in
the

infin
ite t

op quar
k mass l

imit,

F#
→

2
3
,

F!
→ −

2
3
,

G!
→ 0 .

(6)

The
expr

essio
ns w

ith the
com

plet
e mass d

epen
denc

e ar
e rat

her
leng

thy
and

can
be fo

und

in Ref.
[11]

as w
ell a

s th
e NL

O QCD
corr

ectio
ns in

the
LET

appr
oxim

atio
n in Ref.

[18].

The
full

LO
expr

essio
ns for

F#
, F!

and
G!

are
used

whe
reve

r they
appe

ar in the

NLO
corr

ectio
ns in

orde
r to

improv
e the

pert
urba

tive
resu

lts,
similar

to wha
t ha

s be
en

done
in the

sing
le H

iggs
prod

ucti
on case

whe
re u

sing
the

exac
t LO

expr
essio

n redu
ces t

he

disa
gree

ment
betw

een
the

full
NLO

resu
lt an

d the
LET

resu
lt [7

, 19]
.

For
the

num
erica

l eva
luat

ion
we have

used
the

pub
licly

avai
lable

code
HPA

IR [44]
in

whic
h the

know
n NLO

corr
ectio

ns a
re implem

ente
d. As a

cent
ral s

cale
for t

his p
roce

ss

6

(a) gg double-Higgs fusion: gg → HH

H

H

H

g

g

Q

H

Hg

g

Q

(b) WW/ZZ double-Higgs fusion: qq′ → HHqq′

q

q′

q

q′

V ∗

V ∗

H
H

(c) Double Higgs-strahlung: qq̄′ → ZHH/WHH

q

q̄′ V ∗

V

H

H

g

g

t̄

t
H
H

q

q̄
g

(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.

where

t̂± = −
ŝ
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(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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ŝ

)

, (5)

with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
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g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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■ Second production mode at the LHC


■ Unique access to the VVHH interaction

□ should differ from SM prediction if the Higgs boson emerges from 

some new dynamics at the TeV scale (“composite Higgs")


■ The two VBF jets give extra handles to identify the signal

The study of other HH production modes give new insights on the properties of the scalar sector
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Search for VBF HH

24

■ Benefit of high purity or high BR final states


■ Extend HH analyses with dedicated VBF categories

□ bbbb analysis (ATLAS) : extra jet pair with properties (mjj, Δη) 

compatible with VBF production

□ bb𝛾𝛾 analysis (CMS): dedicated categories and selections

Four central b tagged jets : mH signature to reject bkg.
High Δη jet pair : VBF signature
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Figure 6: Observed and expected 95% CL upper limits on the production cross-section for non-resonant HH

production via VBF as a function of the di-vector-boson–di-Higgs-boson coupling modifier 2V . The theory
prediction of the cross-section as a function of 2V is also shown. More details on the predicted cross-section can be
found in Section 3.

The expected and observed limits on SM non-resonant HH production via VBF are given in Table 2.
Limits are also calculated as a function of 2V , as presented in Figure 6. The observed excluded region
corresponds to 2V < �0.76 and 2V > 2.90, while the expected exclusion is 2V < �0.91 and 2V > 3.11.
For 2V values deviating from the SM prediction, growing non-cancellation e�ects result in a harder mHH

spectrum, and thereby higher-pT b-jets, which in turn lead to increased signal acceptance times e�ciency
as shown in Figure 2. This search is therefore not sensitive to the region close to the SM prediction,
corresponding to 2V = 1 .

Table 2: Upper limits at 95% CL for SM non-resonant HH production via VBF in fb (first row) and normalised to
its SM expectation, �SM

VBF (second row). Uncertainties related to the branching ratio of the H ! bb̄ decay are not
considered.

Observed �2� �1� Expected +1� +2�

�VBF [fb] 1460 510 690 950 1330 1780

�VBF/�SM
VBF 840 290 400 550 770 1030

Table 3 summarises the relative impact of the uncertainties on the best-fit signal cross-section for two
di�erent narrow-width resonance production hypotheses, with masses equal to 300 GeV and 800 GeV. Only
major sources of systematic uncertainty are quoted along with the impact of the statistical uncertainty. The
uncertainties of similar nature are grouped into unique categories and the fit is performed independently

14

840 (540) ⨉ σVBFSM 

-0.8 < C2V < 2.9 (-0.9 < C2V < 3.1)


225 (208) ⨉ σVBFSM 
-1.3 < C2V < 3.5 (-0.9 < C2V < 3.1)
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A broader BSM picture

25

■ 5D parameter space, 
contact interactions, large 
kinematic modifications

□ probed with representative 

signal shape benchmarks 


■ EFT effects become more 
important as the 
experimental sensitivity 
approaches the SM
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The contours are obtained using the HH analysis categories only. The best fit value (kl = 0.0, c2V

= 0.3) is indicated by a blue circle, and the SM prediction (kl = 1.0, c2V = 1.0) by a black star.

constrained within uncertainties to the one predicted in the SM.
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Figure 16: Expected and observed 95% CL upper limits on the product of the ggF HH produc-
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(defined in Table 1). The green and yellow bands represent, respectively, the one and two stan-
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14 Summary

A search for nonresonant Higgs boson pair production (HH) has been presented, where one
of the Higgs bosons decays to a pair of bottom quarks and the other to a pair of photons.
This search uses proton-proton collision data collected at

p
s = 13 TeV by the CMS experiment

at the LHC, corresponding to a total integrated luminosity of 137 fb�1. No signal has been
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Full EFT fit as a next stepHH as a probe of high energy BSM effects
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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important consequences for the experimental searches, that are sensitive to anomalous
⁄HHH couplings through both the total HH production cross section and the kinematic
distribution of HH events.

E�ective field theory

In the previous section ⁄HHH has been treated as a free parameter and allowed to vary from
the SM prediction. This has the advantage to cover multiple BSM scenario from a simple
parametrization of the induced coupling modifications at the TeV scale. Results can be
subsequently reinterpreted in a specific model through a comparison for the predicted
⁄HHH deviations. A generalization of this approach with a rigorous method is provided
by the e�ective field theory (EFT). If the scale of BSM physics is assumed to be beyond
the direct reach of the LHC, we can approximate its e�ects through an addition of higher
order operators to the d Æ 4 SM Lagrangian. These additional operators are suppressed
by powers of a scale �. From a bottom-up perspective, � can be interpreted as the
scale up to which only SM fields propagate, while from a top-down perspective it is the
energy scale of the BSM physics itself. The theory thus obtained is not renormalizable,
but this does not constitute a problem in this context as an EFT only represents the
lower energy manifestation of a more extended (and renormalizable) theory at higher
scales. Considering a universal flavour structure and no CP violation, there is only one
dimension–5 operator that has the e�ect of introducing neutrino masses m‹ Ã v

2
/�2. It

can be neglected in this context, so that dimension–6 operators are relevant and the EFT
Lagrangian can be written as:

L = LSM +
ÿ

i

ci

�2 O
6
i + · · · (1.45)

and the BSM physics is fully parametrized in terms of the Wilson coe�cients ci. Once
the EFT defined, any UV-complete BSM model can be matched to it, i.e. reduced to
its lower scale manifestation to derive an expression of the ci coe�cients in terms of the
fundamental model parameters. From an experimental point of view, Eq. (1.45) provides
a generic parametrization to investigate several BSM signatures with a model-independent
approach.

In the context of HH production, a relevant EFT can be constructed as detailed in
Ref. [58]. Following the procedure in Ref. [21], the EFT Lagrangian can be rewritten in
terms of e�ective Higgs boson couplings to provide a simple physics interpretation of the
e�ects of dimension–6 operators. The relevant terms of the Lagrangian for HH processes
initiated by gluon-fusion are given by:

L
HH = 1

2ˆµHˆ
µ
H ≠

m
2
H

2 H
2

≠ k⁄⁄
SM

vH
3

≠
mt

v

3
v + ktH + c2

v
HH

4
(tLtR + h.c.)

+ –s

12fiv

3
cgH ≠

c2g

2v
HH

4
G

A

µ‹G
A,µ‹

(1.46)

The physical interpretation of this Lagrangian is the presence of anomalous ⁄HHH and
yt couplings and of three BSM contact interactions representing ttHH (c2), ggHH (c2g),
and ggH (cg) vertices. In a linear realization of the EWSB, the relation c2 = ≠cg holds.
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Figure 10: pT (H) (left) and m(tt̄H) (right) distributions for tt̄H. Upper plots: (�BSM

NLO
�

�LO)/�LO ratio for di↵erent values of 3. Lower plots: comparison of BSM/SM ratio including
or not NLO EW corrections for di↵erent values of 3.

that does not depend on �3, namely 7,

�EW

��
�3=0

⌘ KEW � 1� C1 � �ZH . (15)

In eq. (14), ⌃SM

NLO
stands for the observable ⌃ at LO + NLO EW accuracy. Thus, in the limit

�3 ! 1, ⌃BSM

NLO
! ⌃SM

NLO
. As can be noted, the ZBSM

H
term factorises the NLO EW contributions

in the SM, while C1 does not. Indeed, in general, EW loop corrections on top of �3-induced
e↵ects need a dedicated two-loop calculation and a full-fledged EFT approach in order to obtain
UV-finite results; only the Z

BSM

H
contribution is completely model-independent and factorises

the NLO EW corrections in the SM. However, it is worth to note that, assuming factorisation
also for C1 contributions, terms of the order 3C1⇥ �EW

��
�3=0

would be anyway negligible, since

either �EW
��
�3=0

(Sudakov logarithms in the boosted regime) or C1 (Sommerfeld enhancement
in the threshold region) is sizeable, but never both of them at the same time. This will be clear
in the di↵erential plots we display in the following.

The EWK-factor at the inclusive level can be found for all processes in Tab. 2, while relevant
di↵erential results for ZH, WH and tt̄H are displayed in Figs. 8, 9 and 10, respectively. In
each figure, plots on the left show the pT (H) distributions, while plots on the right those for
the invariant mass of the final state. In the upper plots we display the ratio (�BSM

NLO
� �LO)/�LO

7Here, in order to keep the notation simple, with the symbol �ZH we still refer to only the �3 contributions to
the Higgs wave-function counterterm. Thus, �EW

��
�3=0

contains further contributions to the Higgs wave-function
counterterm that do not depend on �3.
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degenerate with � ⇠ 6. The fact that the degeneracy appears at different values � for
different processes is important in order to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7. We plot (left)
�⌃�3 as a function of � for the decay widths of the relevant modes at the LHC, which
we denote as ���3 , and we show (right) the analogous quantity (�BR�3) for the Branching
Ratios (BRs). The quantity �BR�3(i) for the Higgs decay into the final-state i can be
conveniently written as

�BR�3(i) =
(� � 1)(C�

1
(i)� C

�tot
1

)

1 + (� � 1)C�tot
1

, (4.4)

where we have defined C
�tot
1

⌘
P

j
BRSM(j)C�

1
(j) and with our input parameters C

�tot
1

=

2.3 · 10�3. The quantity C
�tot
1

, which actually is the C1 term for the total decay width, is
very small since C

�
1
(bb̄) = 0 and bb̄ is the dominant decay channel. Note that, although the

H ! gg decay is not phenomenologically relevant, the total decay width does depend on
���3(gg), since �gg yields a non-negligible fraction (8.5 %) of �tot.
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Production xs and decay BR Differential distributions

Single H production as a precision tool 
to look for NLO effects from λHHH 

Simplified template XS single H 
measurements used as input

(a)

(b) (c) (d)

Figure 1: Examples of one loop �HHH -dependent diagrams for the Higgs boson self energy (a) and the single Higgs
boson production in the VBF (b), VH (c), and ttH (d) modes. The self-coupling vertex is indicated by the filled
circle.

1 Introduction

After the discovery of the Higgs boson by the ATLAS [1] and CMS [2] experiments, the properties of this
new particle have been probed by the two experiments, testing their compatibility with the prediction of the
Standard Model (SM). During the two runs of data-taking of the Large Hadron Collider (LHC) at CERN, the
Higgs production cross-sections and decay branching ratios in various channels have been measured with
an increasing precision, as well as the Higgs boson couplings with the SM particles [3–5]. Nevertheless
the properties of the Higgs scalar potential, and in particular the Higgs boson self-coupling, are still largely
unconstrained. The most recent constraints on the Higgs boson trilinear self-coupling, �HHH , have been
set in the context of a direct search of double Higgs boson production. Results are reported in terms
of � = �HHH/�SMHHH

, which is the ratio of the Higgs boson self-coupling to its SM expectation. It is
constrained to at 95% confidence level (C.L.) to �5.0 < � < 12.1 [6] and �11.8 < � < 18.8 [7] by
ATLAS and CMS, respectively, using up to 36 fb�1of Run-2 data.

An alternative and complementary approach to study the Higgs boson self-coupling has been proposed in
the Refs. [8–13]. Single Higgs processes do not depend on �HHH at leading order (LO), but the Higgs
trilinear self-coupling contributions need to be taken into account for the calculation of the complete
next-to-leading (NLO) electro-weak (EW) corrections. In particular, �HHH contributes at NLO EW
via Higgs self energy loop corrections and additional diagrams, as shown by the examples in Figure 1.
Therefore, an indirect constraint on �HHH can be extracted by comparing precise measurements of single
Higgs production yields and the SM predictions corrected for the �HHH -dependent NLO EW e�ects.
Refs. [8, 9] propose a framework for a global fit to constrain the Higgs trilinear coupling, where all the
Higgs boson production and decay channels are modified by parameters:

µi f (�) = µi(�) ⇥ µ f (�) ⌘
�i(�)
�SM,i

⇥
BR f (�)
BRSM, f
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Figure 1: Representative one-loop diagrams in single Higgs processes with anomalous trilinear
coupling. Di↵erential information on ggF requires the calculation of EW two-loop amplitudes
for Hj production, which is not yet feasible with the current technology.

be a correct approach up to NNLO in ref. [40].4 Representative diagrams contributing to the
C1 for the di↵erent processes are depicted in Fig. 1.

In eq. (5), at variance with the case of ⌃NLO

�3
in ref. [39], the universal component Z

BSM

H

corresponds to the wave function renormalisation where we have resummed only the new-physics
contributions at one loop,

Z
BSM

H
=

1

1� (2

3
� 1)�ZH

, (6)

�ZH = � 9

16
p
2⇡2

✓
2⇡

3
p
3
� 1

◆
Gµm

2

H
= �1.536⇥ 10�3

. (7)

The SM component is directly included at fixed NLO via the �ZH term appearing in eq. (5).
Numerically, the di↵erence between eq. (5) and ⌃NLO

�3
in ref. [39] is at sub-permill level and thus

negligible. On the other hand, in the limit 3 ! 1, ZBSM

H
! 1 and thus ⌃BSM

�3
goes to the SM

case at fixed NLO

⌃SM

�3
= ⌃LO(1 + C1 + �ZH) . (8)

4As the weak loops considered here are always characterised by scales of the order of the mass of the heavy
particles in the propagators (weak bosons, top quarks and the Higgs) while QCD corrections at threshold are
typically dominated by lower scales, factorisation is a reasonable working assumption.
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■ Reinterpretation of the simplified template cross section 
combined measurements


■ Assume that all the other couplings are fixed to the SM 
prediction


■ Variations of λHHH and of other couplings cannot be 
distinguished

□ reduced sensitivity by 50% if κV also fitted

□ no sensitivity if further degrees of freedom are introduced

Measurement sensitive only under strict 
assumptions on other Higgs boson couplingsComplements direct determination from HH
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LO (HH) with NLO (H) effects combined within a κ-framework 
Not fully coherent theoretically ⟹ full EFT fit as a next step!

A global view of the self coupling

28

■ H+HH: probe 
simultaneously λHHH and 
other couplings variations


■ Remove degeneracies 
with κt


■ ~20% improvement in 
sensitivity to λHHH when 
adding single H

Probe more generic models 
with all couplings variations

double-Higgs analyses provides substantial constraints on the � parameters even in this more generic
model. The results for the �-only model and for the more generic model are summarised in Table 2.
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Figure 5: Value of �2 ln⇤ as a function of � with W , Z , t , b , ` profiled (i.e., the generic model) for the data (a)
and the Asimov dataset [50] generated assuming � = 1 with the likelihood distribution ⇤ evaluated with nuisance
parameters fixed to the best-fit values obtained from data and the parameters of interest fixed to the SM hypothesis
(b). The curves are compared to the �-only model (where all m modifiers are set to unity). The intersections of the
dashed horizontal lines, corresponding to �2 ln⇤ = 1 and �2 ln⇤ = 3.84, with the profile likelihood curve are used
to define the ±1� sigma uncertainty on � and the 95% CL interval, respectively.

Table 2: Best-fit values for the -modifiers with ±1� uncertainties for the �-only and generic models. The 95% CL
interval for � is also reported. For each model the upper row corresponds to the observed results, and the lower row
to the expected results obtained using Asimov datasets [50] generated under the SM hypothesis.

Model W+1�
�1� Z+1�

�1� t+1�
�1� b+1�

�1� `+1�
�1� �+1�

�1� � [95% CL]

�-only 1 1 1 1 1
4.6+3.2

�3.8 [�2.3, 10.3] obs.

1.0+7.3
�3.8 [�5.1, 11.2] exp.

Generic
1.03+0.08

�0.08 1.10+0.09
�0.09 1.00+0.12

�0.11 1.03+0.20
�0.18 1.06+0.16

�0.16 5.5+3.5
�5.2 [�3.7, 11.5] obs.

1.00+0.08
�0.08 1.00+0.08

�0.08 1.00+0.12
�0.12 1.00+0.21

�0.19 1.00+0.16
�0.15 1.0+7.6

�4.5 [�6.2, 11.6] exp.

6 Conclusion

The Higgs boson self-coupling modifier � = �HHH/�SMHHH
has been constrained with a combination

of single-Higgs analyses using data collected at
p

s = 13 TeV with an integrated luminosity of up to

10

20

reliable outside of this range. Figure 12 shows the 2D likelihood scans of kl versus kt for an
Asimov data set assuming the SM hypothesis and for the observed data. The regions of the 2D
scan where the kt parametrization for anomalous values of kl at LO is not reliable are shown
with a gray band.

The inclusion of the ttH categories significantly improves the constraint on kt . The 1D negative
log-likelihood scan as a function of kt with kl fixed at kl =1 is shown in Fig. 13 for an Asimov
data set generated assuming the SM hypothesis, kt = 1, as well as for the observed data. The
measured value of kt is kt = 1.3+0.2

�0.2 (kt = 1.0+0.2
�0.2 expected). Values of kt outside the interval

[0.9, 1.9] are excluded at 95% CL.
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Figure 12: Negative log-likelihood contours at 68% and 95% CL in the (kl, kt ) plane evaluated
with an Asimov data set assuming the SM hypothesis (left) and the observed data (right). The
contours obtained using the HH analysis categories only are shown in blue, and in orange
when combined with the ttH categories. The best fit value for the HH categories only (kl =
0.6, kt = 1.2) is indicated by a blue circle, for the HH + ttH categories (kl = 1.4, kt = 1.3) by a
orange diamond, and the SM prediction (kl = 1.0, kt = 1.0) by a black star. The regions of the 2D
scan where the kt parametrization for anomalous values of kl at LO is not reliable are shown
with a gray band.

Upper limits at 95% CL are also set on the product of the HH VBF production cross section and
branching fraction, sVBF HHB(HH ! ggbb), with the yield of the ggF HH signal constrained
within uncertainties to the one predicted in the SM. The observed (expected) 95% CL upper
limit on sVBF HHB(HH ! ggbb) amounts to 1.02 (0.94) fb. The limit corresponds to 225 (208)
times the SM prediction. This is the most stringent constraint on sVBF HHB(HH ! ggbb) to
date.

Limits are also set as a function of c2V , as presented in Fig. 14. The observed excluded region
corresponds to c2V < �1.3 and c2V > 3.5, while the expected exclusion is c2V < �0.9 and
c2V > 3.1. It can be seen in Fig. 14 that this analysis is more sensitive to anomalous values of
c2V than to the region around the SM prediction. This is related to the fact that for anomalous
values of c2V the eMX spectrum is harder, which leads to an increase in the product of signal
acceptance and efficiency as well as a more distinct signal topology.

In the scenario where HH production occurs via the VBF and ggF modes, we set constraints
on the kl and c2V coupling modifiers. A 2D negative log-likelihood scan in the (kl, c2V) plane
is performed using the 14 HH analysis categories. Figure 15 shows 2D likelihood scans for the

HH(bb𝛾𝛾) + ttH(𝛾𝛾)
HH + ggF H + VBF H + VH 

+ ttH (excl ttH(𝛾𝛾) ) 
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Towards the Run 3
Expanding the direct HH measurements 

■ Expect in total ~300 fb-1 collected, 13 → 14 TeV 
⟹ ~ 10k HH events produced!


■ Channels will sub-percent BR but very clean will start to 
be sensitive to SM-like values


■ Possibility to capitalise on the Run 2 experience to 
improve the analyses and develop dedicated HH triggers


More precision in indirect H measurements 

■ Benefit of the ⨉2 increase in the statistics


Opportunities for direct BSM searches 

■ Resonant HH(-like) signatures to probe extended scalar 
sectors 
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The high-luminosity LHC

■ Upgrade of the LHC 
planned to start after the 
LS3

□ upgrade of the 

quadrupoles to focus 
more the beams


□ “crab cavities” to reduce 
the bunch crossing angle

30

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

LHC

LS1 LS2

7TeV
8TeV

13TeV 14TeV

75% nominal  
luminosity

2x nominal  
luminosity

nominal  
luminosity

25 fb-1 150 fb-1 > 300 fb-1

Run-I Run-II Run-III

Exp.:
Beam pipe

Machine:
Splice consolidation

2023

Exp.:
Upgrade Phase1

Machine:
Injector
upgrade

2025 2026

LS3
2027

14TeV
5x nominal  
luminosity

2035

3000 fb-1

Energy

instan. 
luminosity

integrated
luminosity

High  
Luminosity
LHC

2024
Machine:
HL-LHC 
installation

Exp:
Upgrade Phase2

Unique possibility for very high precision Higgs physics 

Expect to reach the ultimate sensitivity on HH

■ Increase of the instantaneous 
luminosity by ~5 w.r.t. design values

□ levelling of the luminosity for a large 

part of the fill


■ 3 ab-1 during a decade of 
operations
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Why is it challenging?

■ Up to 200 simultaneous pp interactions per bunch crossing!

□ radiation hardness and reconstruction are key challenges

□ triggering is particularly difficult in the harsh HL-LHC enviroment


■ HH analyses sensitivity to λHHH crucially relies on low mHH


□ soft objects → difficult region at high pileup

31

4. HH ! bbbb 11

in the context of EFT models are derived for the boosted search.

Using the resolved bbbb search strategy, upper limits are computed at 95% CL given the pro-
jected signal and background distributions shown in Fig. 1. Considering the systematic uncer-
tainties discussed above, an upper limit of 2.1 times the SM prediction is expected, correspond-
ing to a local significance of the expected HH signal of 0.95s. If only statistical uncertainties are
taken into account, the expected upper limit is 1.6 times the SM prediction and the significance
is 1.2s.

Challenges towards achieving these sensitivities at the HL-LHC will be the capability to de-
velop efficient triggers for the bbbb signal, and to precisely model the multijet background.

Triggering on multi jet signatures will be particularly challenging at the HL-LHC and, despite
the upgrades at the L1 trigger and HLT systems, thresholds might be significantly higher than
currently achieved in Run II collisions. A study of the change in the search sensitivity as a
function of the minimal jet pT threshold is reported in Fig. 3. The study is realised by increasing
the jet pT value applied at preselection and studying the resulting changes in the sensitivity
with respect to the nominal pT threshold of 45 GeV discussed above. It has been verified that the
loss of sensitivity does not arise from a reduced discrimination power of the BDT discriminant
because of changes in the kinematic properties induced by the higher thresholds. Instead, the
reduced sensitivity is a direct consequence of the reduced acceptance to HH ! bbbb events,
and an efficient trigger with low pT thresholds will be crucial at the HL-LHC.

Changes in the SM HH significance as a function of the uncertainty on the high S/B bins for
the QCD multijet background are also shown in Fig. 3.
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Figure 3: Loss of sensitivity of the HH ! bbbb resolved search as a function of the minimal jet
pT threshold (left) and as a function of the uncertainty assumed on high S/B bins for the QCD
multijet background (right). In each curve, only the quantity shown on the horizontal axis
is varied while the other are kept fixed to the nominal values assumed. The “loss” quantity
plotted on the ordinate is defined 1 � Z/Z

0, where Z denotes the significance of the HH signal
in the hypothesis considered and Z

0 the significance for the cases of a 45 GeV pT threshold (left)
and of no uncertainty considered (right).

Using the event yields and distributions shown in Fig. 2 for the boosted search strategy, we
calculate the 95% confidence level (CL) upper limits on the nonresonant HH productions in the
SM and for other combinations of BSM couplings using the shape benchmark signals 1–12, as

CMS-PAS-FTR-18-018

Essential to maintain low thresholds!

An ambitious program of detector upgrades is planned to maintain 
and improve the performance at the HL-LHC 

Unique opportunity to expand the physics capabilities of the 
experiments, key for the success of the physics programme

PoS(EPS-HEP2015)018

 5 

the charged tracks. This will substantially improve the VBF/VBS jets identification and the 
missing transverse energy measurement.  
   

             
Figure 4: Simulation of the reconstruction of 140 pileup p-p collisions in the CMS tracker. 

 
The main new feature for the pixel detectors will be the smaller size of the pixels in the 

range of 50 x 50 µm2 to 25 x 100 µm2 for improved resolution. 
In the outer tracker the strip length will be divided by roughly a factor 4, to about 2.5 

cm and 5 cm depending on the radius, to produce similar level of occupancies as with the 
current detectors and operating conditions. The strip pitch will be in the range of 75 µm to 90 
µm to provide appropriate resolution with a binary readout. A major innovation with the new 
trackers will be to implement tracking information at the hardware trigger level of the 
experiments. The proposed trigger and data acquisition (DAQ) schemes for ATLAS and CMS 
are presented in figure 6. With improved transverse momentum precision and the possibility to 
perform track isolation and vertex association, the background rates will be strongly reduced 
while maintaining the signal acceptance. In CMS, a special module design with two close 
sensors, with parallel strips, will allow sending hit information to the trigger at the 40 MHz 
beam crossing frequency, for tracks with transverse momentum greater than 2 GeV. The hit 
position difference measured in a common frontend chip for the two sensors will depend on the 
track bending in the high magnetic field, allowing the selective readout of the proper hits. In the 
backend electronics (BE), the tracks will be reconstructed and fitted and then coupled with the 
information of other detectors to produce trigger objects for the event selection. In Atlas, 
information from the muon systems and the calorimeters will trigger readout of regions of 
interest in the tracker at 1 MHz, the tracks will then be reconstructed in the BE electronics and 
then matched to other detector information for the final trigger decision.  ATLAS modules will 
feature two sensors with stereo angle for measurement of the z-coordinate, in CMS, due to the 
specific feature of the modules for trigger purpose, the z-measurement will be obtained in the 
three first layers with one of the two sensors having mini-strip (macro-pixels) of 1.5 mm length.   
 

 
Figure 5: Configuration of the Phase II trackers in ATLAS (left) and CMS (right). 

CMS simulation of 140 p-p collisions 

CMS 

ATLAS 
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HH prospects at the HL-LHC

32

■ HH sensitivity projected with Run  2 
extrapolation and dedicated Phase-2 
analyses

□ small impact of systematic uncertainties 

observed in most channels


■ Expect 50% (100%) precision on κλ at 
68% (95%) CL

□ with the current analysis techniques! 

Further improvements should come in the 
next 20 years


■ Can determine whether Higgs boson 
self-coupling exists (κλ ≠ 0)


■ Looser constraints from single H 
measurements
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Figure 3. Left: Projected combined HL-LHC sensitivity to Higgs trilinear coupling from direct search channels. Right:
sensitivity to BSM Higgs bosons, in the H/A ! tt channel. From Ref. [2].

self-coupling l , ATLAS and CMS project a sensitivity to the HH signal of approximately 3 s.d. per experiment, leading to
a combined observation sensitivity of 4 s.d. These analyses, which make use also of the HH mass spectrum shape, result in
the likelihood profile as a function of kl shown in Fig. 3 (left). An important feature of these analyses is the presence of the
secondary minimum in the likelihood lineshape, due to the degeneracy in the total number of HH signal events for different kl
values. We note that at the HL-LHC the secondary minimum can be excluded at 99.4% CL, with a constraint on the Higgs
self-coupling of 0.5 < kl < 1.5 at the 68% CL. The results on HH production studies are statistics limited, therefore a dataset
of at least 6 ab�1 (ATLAS and CMS combined) is essential to achieve this objective.

Higgs studies at HL-LHC will enhance the sensitivity to BSM physics, exploiting indirect probes via precision measurements,
and a multitude of direct search targets, ranging from exotic decays of the 125 GeV Higgs boson (e.g. decays including light
scalars, light dark photons or axion-like particles, and decays to long-lived BSM particles) to the production of new Higgs
bosons, neutral and charged, at masses above or below 125 GeV. As an example, Fig. 3 (right) shows a summary of the MSSM
regions of parameter space that will be probed by ATLAS and CMS. The expected exclusion limit for H/A ! tt is presented
in black-dashed and compared to the present limit (in red and green for ATLAS and CMS, respectively). The HL-LHC will
have access to new Higgs bosons as heavy as 2.5 TeV for tanb > 50. In the figure, we also present the expected bound coming
from Higgs precision coupling measurements which excludes Higgs bosons with masses lower than approximately 1 TeV over
a large range of tanb .

Precision measurements provide an important tool to search for BSM physics associated to mass scales beyond the LHC
direct reach. The EFT framework, where the SM Lagrangian is supplemented with dimension-6 operators Âi ciO

(6)
i

/L2, allows
one to systematically parametrise BSM effects and how they modify SM processes. Figure 2 (right) shows the results of a global
fit to observables in Higgs physics, as well as diboson and Drell-Yan processes at high energy. The fit includes all operators
generated by new physics that only couples to SM bosons. These operators can either modify SM amplitudes, or generate new
amplitudes. In the former case, the best LHC probes are, for example, precision measurements of Higgs branching ratios. In the
case of the operator OH , for example, the constraints in Fig. 2 (right) translate into a sensitivity to the Higgs compositeness
scale f > 1.6 TeV, corresponding to a new physics mass scale of 20 TeV for an underlying strongly coupled theory. The effects
associated with some new amplitudes grow quadratically with the energy. For example, Drell-Yan production at large mass can
access, via the operators O2W,2B, energy scales of order 12 TeV (Fig. 2).

2.1 Production of multiple EW gauge bosons
The measurement of production of pairs or triplets of EW gauge boson will be of great importance to test the mechanism of EW
symmetry breaking, since it can signal the presence of anomalous EW couplings, and of new physics at energy scales beyond
the reach of direct resonance production. First observations of EW multiboson interactions have recently been achieved in
vector boson scattering (VBS) of WW and WZ and we expect a fuller picture to be accessible at HL-LHC, by statistics, but also
through improved detector instrumentation and acceptance in the forward direction. Table 1 summarizes the expected SM yields,
quoting the expected precision and significance for several HL-LHC measurements. In particular, the extraction of individual
polarization contributions to same-sign WW scattering will yield a > 3 s.d. evidence for WLWL production, combining ATLAS
and CMS results.

3

Combination of channels and experiments is crucial to achieve sensitivity at the HL-LHC

arXiv:1902.00134
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Future colliders : a general overview

■ FCC-hh

□ 100-km tunnel at CERN

□ 16 T magnets for 100 TeV

□ low-E (LE-FCC) option with 6 

T magnets → 37 TeV


■ HE-LHC

□ 16 T magnets in the LHC 

tunnel for 27 TeV

33

 3

The FCC project
Within the FCC collaboration (CERN as host 
lab), 5 main accelerator facilities have been 
studied:  

•  pp-collider (FCC-hh)
• defines infrastructure requirements
• 16 T → 100 TeV in 100 km tunnel

• ee-collider (FCC-ee):
• as a (potential) first step

• ep collider (FCC-eh)

• HE-LHC : 
• 27 TeV (16T magnets in LHC tunnel)

• Low E FCC-hh
• 100 km - 6T - 37 TeV

CDRs and European Strategy documents have been made public in Jan. 2019  
https://fcc-cdr.web.cern.ch/

CERN-FCC-PHYS-2019-0001

pp 
colliders

e+e- colliders
Linear colliders 

■ ILC : super-conductive RF cavities

□ staged, √s = 250 GeV - 1 TeV, L ~ 1-3 ab-1


■ CLIC : two-beam acceleration scheme

□ staged, √s = 380 GeV - 3 TeV, L ~ 1-5 ab-1


Circular colliders 

■ FCC-ee : same tunnel as FCC-hh

□ √s = 180 - 380 GeV, L = 150 - 1.5 ab-1


■ CepC : same tunnel as SppC 
(upgrade to a pp collider)

□ √s = 90 - 240 GeV, L = 16 - 6 ab-1


Towards high energies Towards precision Higgs physics
σ(HH) ⨉33 xs, ⨉10 lumi w.r.t HL-LHC
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HH at e+e- colliders

■ √s ≳ 400 GeV needed for HH production

□ only achievable in ILC500/1000 and CLIC1500/3000


■ Small cross sections for ZHH → O(500) events 
expected for the full run


■ VBF production interesting for √s > 1 TeV
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Comparison of the sensitivities
Direct HH 

■ leading the future 
sensitivity on λHHH


■ need high energies at e+e- 
colliders


■ ultimate precision of 5% 
achieved at FCC-hh


Indirect single-H 

■ limited by HH HL-LHC 
reach until higher energies 
and luminosities are 
achieved
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Figure 11. Sensitivity at 68% probability on the Higgs cubic self-coupling at the various FCs. All values reported correspond
to a simplified combination of the considered collider with HL-LHC. Only numbers for Method (1), i.e. "di-H excl.",
corresponding to the results given by the future collider collaborations, and for Method (4), i.e. "single-H glob." are shown (the
results for Method (3) are reported in parenthesis). For Method (4) we report the results computed by the Higgs@FC working
group. For the leptonic colliders, the runs are considered in sequence. For the colliders with

p
s . 400 GeV, Method (1) cannot

be used, hence the dash signs. Due to the lack of results available for the ep cross section in SMEFT, we do not present any
result for LHeC nor HE-LHeC, and only results with Method (1) for FCC-eh.

improve the precision by about two orders of magnitude, to a 1-2%. For the strange quarks the constraints are about 5-10⇥
the SM value while for the first generation it ranges between 100-600⇥ the SM value. For the latter, future colliders could
improve the limits obtained at the HL-LHC by about a factor of two. For HL-LHC, HE-LHC and LHeC, the determination of
BRunt relies on assuming kV  1. For kg , kZg and kµ the lepton colliders do not significantly improve the precision compared
to HL-LHC but the higher energy hadron colliders, HE-LHC and FCChh, achieve improvements of factor of 2-3 and 5-10,
respectively, in these couplings.

For the electron Yukawa coupling, the current limit ke < 611 [78] is based on the direct search for H ! e+e�. A preliminary
study at the FCC-ee [79] has assessed the reach of a dedicated run at

p
s = mH . At this energy the cross section for e+e� ! H

is 1.64 fb, which reduces to 0.3 with an energy spread equal to the SM Higgs width. According to the study, with 2 ab�1 per
year achievable with an energy spread of 6 MeV, a significance of 0.4 standard deviations could be achieved, equivalent to an
upper limit of 2.5 times the SM value, while the SM sensitivity would be reached in a five year run.

While the limits quoted on kc from hadron colliders (see Table 13) have been obtained indirectly, we mention that progress
in inclusive direct searches for H ! cc̄ at the LHC has been reported from ATLAS together with a projection for the HL-LHC.

Table 13. Upper bounds on the ki for u, d, s and c (at hadron colliders) at 95% CL, obtained from the upper bounds on BRunt
in the kappa-3 scenario.

HL-LHC +LHeC +HE-LHC +ILC500 +CLIC3000 +CEPC +FCC-ee240 +FCC-ee/eh/hh
ku 560. 320. 430. 330. 430. 290. 310. 280.
kd 260. 150. 200. 160. 200. 140. 140. 130.
ks 13. 7.3 9.9 7.5 9.9 6.7 7. 6.4
kc 1.2 0.87 measured directly

36/75
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Conclusions
■ The shape of the Higgs potential is so far largely unknown

□ its measurement will deepen our understanding of the scalar sector


■ HH measurements give direct access to λHHH

□ small cross section : experimentally challenging

□ crucial to explore and combine several decay channels

□ broad spectrum of analyses by ATLAS and CMS


■ Sensitivity from single H measurements via NLO effects

□ need to disentangle λHHH from other effects of physics beyond the SM

□ benefit of a H + HH combination for maximal sensitivity


■ Full Run 2 dataset under publication, and Run 3 close to start!


■ Very good prospects for measurements at the HL-LHC

□ with important experimental challenges to tackle


■ One of the key physics topics for future accelerators

36

A HH→bb𝜏𝜏 event candidate 
in the CMS 2016 dataset



Additional material
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Evaluating the prospects

38

Detector 
upgrades

Theory 
developments

Analysis 
improvements

Extrapolations: 
Same upgraded detector 
performance @ PU 200 as Run 2 
Phase-2 MC-based analyses: 
Fast or full sim with Phase 2 
performance from TDRs

Performance scenarios 
studied to bracket the 
future performance at 
the HL-LHC 

Assumptions based on 
Run 2 experience 

Assume uncertainties halved 
w.r.t. current values

Syst. uncertainties: scaled with 
luminosity until “floor” levels 
Analysis methods: using today’s 
ideas + future detector potentialities 
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HH at future pp colliders
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MSTW2008

σHH (100 TeV) = 1224 fb

⨉33 xs, ⨉10 lumi w.r.t HL-LHC

 20

HH →bb4l

• New channel opening at FCC-hh !!

• clean channel with mostly reducible backgrounds (single Higgs)

• Simple cut and count analysis on (4e, 4μ and 2e2μ channels)

• δkλ / kλ = 15-20%  depending on systematics assumptions

δkλ / kλ δμ / μ 

[Borgonovi, Braibant, De Filippis, Fontanesi, Ortona, MS]

bbZZ(4𝓁)

Δκλ =15-20%

Benefit of the high energy and luminosity 
Clean channels and new topologies used to fight the PU

■ For bbbb, use HH + jets

□ boosted jets easier to separate from the background

□ the centre-of-mass boost allows to maintain access to events 

close to the mHH threshold

■ Very rare channels and 
clean achieve good 
sensitivity


■ bb𝛾𝛾, bb𝜏𝜏 leading 
the sensitivity 
because of the good 
purity
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EFT effects in HH

40

■ 5 interactions involved in ggF

□ 3 specific to HH : λ, c2g, c2


□  2 constrained also in single H: cg, yt 


■ 3 interactions involved in VBF

□  2 specific to HH: λ, c2V


□ 1 constrained also in single H: cV


■ Correlations between these parameters 
depend on the way EFT is realised

Cross section (LO) Signal shapes (LO)

A more generic result needs to account 
for the effect of other contributions 

Cross sections of O(1) c2/c2g are within 
experimental reach

Results typically assume λ-only 
variations
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derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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HH shape benchmarks
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Nr. k� kt c2 cg c2g
1 7.5 1.0 -1.0 0.0 0.0
2 1.0 1.0 0.5 -0.8 0.6
3 1.0 1.0 -1.5 0.0 -0.8
4 -3.5 1.5 -3.0 0.0 0.0
5 1.0 1.0 0.0 0.8 -1.0
6 2.4 1.0 0.0 0.2 -0.2
7 5.0 1.0 0.0 0.2 -0.2
8 15.0 1.0 0.0 -1.0 1.0
9 1.0 1.0 1.0 -0.6 0.6
10 10.0 1.5 -1.0 0.0 0.0
11 2.4 1.0 0.0 1.0 -1.0
12 15.0 1.0 1.0 0.0 0.0
SM 1.0 1.0 0.0 0.0 0.0
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Shape benchmark results - 2016 combination
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Single coupling scans
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■ Upper limit plot as function of c2 
from the bb𝛾𝛾 analysis


■ Assumes that only c2 is varied and 
other couplings are fixed to the SM 
value


■ Under this assumption, observe 
-0.6 < c2 < 1.1 (exp. -0.4 < c2 < 0.9)

□ correlation with other couplings are 

expected to reduce the sensitivity
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derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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HH → bbWW

44

■ Target WW→𝓁𝜈𝓁𝜈 decays


■ tt irreducible background 
suppressed with DNN method

□ use kinematic information of the 

objects in the event: mass. pT, 
angles


□ CMS uses a parametrised DNN for 
maximal sensitivity over κλ


■ The ML discriminant used to look 
for a signal

□ ATLAS: counting exp. at high score

□ CMS: fit to the DNN distribution

     Advanced ML methods for signal identificationIrreducible tt background

7.2 Nonresonant production 13
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Figure 6: The DNN output distributions in data and simulated events, for the e+e� (top),
e±µ⌥ (middle), and µ+µ� (bottom) channels, in three different mjj regions: mjj < 75 GeV, mjj 2
[ 75, 140 )GeV, and mjj � 140 GeV. The parameterised resonant DNN output (left) is evaluated
at mX = 400 GeV and the parameterised nonresonant DNN output (right) is evaluated at kl =
1, kt = 1. The two signal hypotheses displayed have been scaled to a cross section of 5 pb
for display purposes. Error bars indicate statistical uncertainties, while shaded bands show
post-fit systematic uncertainties.

for the mbb and m`` distributions is relaxed to dHH > 5. No significant excess over the expected SM
background is observed and upper limits are set on non-resonant Higgs boson pair production at 95%
confidence level (CL) using the CLs method [131]. Table 5 presents these upper limits and comparisons
with the SM prediction. The observed (expected) limit at 95% CL is 1.2 (0.9) pb, corresponding to 40 (29)
times the SM prediction.
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Figure 3: Distributions of mbb (left), m`` (middle), and the discriminant dHH (right). The distributions are shown
after the fit to data in the control regions under the background-only hypothesis. Each distribution includes both the
SF and DF events and imposes signal selection requirements on all quantities except the one being plotted, but the
requirement on dHH has been relaxed to dHH > 5 for the distributions of mbb and m`` . The HH ! bb`⌫`⌫ signal
(“HH”) is overlaid and has its cross-section scaled by a factor of 20 relative to the SM prediction for visualisation
purposes. The ratio of the data to the sum of the backgrounds is shown in the lower panel of each figure. The hatched
bands indicate the combined statistical and systematic uncertainty.

Table 5: Observed and expected upper limits on the ggF-initiated non-resonant HH production cross-section at 95%
CL and their ratios to the SM prediction (�SM(gg ! HH) = 31.05 fb [12–19]). The ±1� and ±2� variations about
the expected limit are also shown.

�2� �1� Expected +1� +2� Observed
� (gg ! HH) [pb] 0.5 0.6 0.9 1.3 1.9 1.2
� (gg ! HH) /�SM (gg ! HH) 14 20 29 43 62 40

8 Conclusions

A search for non-resonant Higgs boson pair production, as predicted by the SM, is presented in the final
state with at least two b-tagged jets and exactly two leptons with opposite electric charge, where one
of the Higgs bosons decays to bb and the other decays to either WW⇤, Z Z⇤, or ⌧⌧. The analysis uses
pp collision data recorded at

p
s = 13 TeV by the ATLAS detector at the LHC, corresponding to an

integrated luminosity of 139 fb�1. The data are in agreement with the predictions for the SM background
processes. An observed (expected) 95% CL upper limit is set on the cross-section for the production of
Higgs boson pairs, corresponding to 40 (29) times the SM prediction. These limits are comparable to the
previous leading searches for non-resonant Higgs boson pair production performed by the ATLAS and
CMS experiments.

12

Obs. (Exp.) : 40 (29) ⨉ σHHSM Obs. (Exp.) : 78.6 (88.8) ⨉ σHHSM
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Rare HH channels
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■ Targets WW→𝓁𝜈qq decays


■ Look for a signal using the m𝛾𝛾 spectrum
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Figure 3: Invariant mass spectrum of the diphoton system in the searches for both resonant and non-resonant Higgs
boson pair production, with the corresponding backgrounds for (a) mX = 260 GeV without any p

��
T selection and (b)

the non-resonant case with a p
��
T > 100 GeV selection. Fits to m�� are performed using the full signal-plus-background

model. In each plot, only the background component is present. The shape parameters and normalisation of the
continuum background model are determined in the fits. The “SM Higgs boson” in (a) contains the single-Higgs-
boson background and SM di-Higgs-boson background. The band shows the uncertainty of the “Total background”
in the upper panel and is calculated by a sampling method. The bottom panel shows the di�erence between the
number of events in data and the estimated number of background events, as determined by the fits.

pair production is 5.4 pb, while the observed limit is 7.7 pb, as shown in Table 6. The di�erence between
the expected and observed limits is due to a slight excess of events in data. The expected upper limit
on the cross section times the branching fraction of X ! HH ranges from 17.6 pb to 4.4 pb, while the
observed limit ranges from 40 pb to 6.1 pb, as a function of mX between 260 and 500 GeV, as shown in
Figure 4(a).

Table 6: The 95% CL upper limits for the non-resonant production and the ratios of the limits to the SM cross-section
value of �(pp ! HH) = 33.4+2.4

�2.8 fb [17]. The ±1� and ±2� intervals around the median limit are also presented.

+2� +1� Median �1� �2� Observed

Upper limits on �(HH) [pb] 12 8.0 5.4 3.9 2.9 7.7

Upper limits on �(HH) ⇥ B(��WW
⇤) [fb] 12 7.8 5.3 3.8 2.8 7.5

Ratios of limits over the SM �(HH) 360 240 160 120 87 230

Assuming the SM Higgs branching fractions of B(H!WW
⇤) = (21.52 ± 0.32)% and B(H!��) =

(0.227 ± 0.005)% [17], the expected upper limit on the cross section for non-resonant production of
HH ! ��WW

⇤ is 5.3 fb, while the observed limit is 7.5 fb, as shown in Table 6. The expected upper limit
on the cross section for resonant production of X ! HH ! ��WW

⇤ ranges from 17.2 fb to 4.3 fb, while
the observed limit ranges from 39.1 fb to 6.0 fb, as a function of mX between 260 and 500 GeV, as shown
in Figure 4(b). The statistical uncertainty dominates in the final limits, while the impact of systematic
uncertainties on these limits is only a few percent.
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Figure 2: Expected and observed yields in each channel after all selection criteria for the non-resonant HH production
searches. The label NSFOS indicates the number of same-flavour, opposite-sign lepton pairs in the channel. Low and
high m4` indicates m4` < 180 GeV and m4` > 180 GeV, respectively. The shaded band in the ratio plot shows the
systematic uncertainty in the background estimate. The signal is scaled by a factor of 20.

Channel Category Background Expected Signal Observed

2 leptons

ee 29 ± 10 0.028 ± 0.004 35

eµ 11.1 ± 2.2 0.049 ± 0.005 18

µµ 8.1 ± 2.5 0.034 ± 0.004 4

3 leptons
NSFOS = 0 1.0 ± 0.7 0.011 ± 0.005 3

NSFOS = 1,2 4.3 ± 3.8 0.033 ± 0.010 8

4 leptons m4` < 180 GeV
NSFOS = 0,1 2.3 ± 1.4 0.005 ± 0.001 2

NSFOS = 2 21 ± 5 0.002 ± 0.001 22

4 leptons m4` > 180 GeV
NSFOS = 0,1 3.0 ± 1.8 0.010 ± 0.002 3

NSFOS = 2 7.9 ± 2.0 0.005 ± 0.001 4

Table 1: Expected and observed yields in each channel after all selection criteria and the profile-likelihood fit for
the non-resonant HH production searches. The expected signal refers to the SM non-resonant HH production,
corresponding to its calculated cross-section at

p
s = 13 TeV of 33.4 fb. The label NSFOS indicates the number

of same-flavour, opposite-sign lepton pairs in the channel. Systematic uncertainties on the signal and background
estimates are shown.

9

■ 2𝓁, 3𝓁, 4𝓁 final states, veto on b jets


■ Prompt and fake lepton backgrounds from 
control regions


■ Counting experiment in each region
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Resonant HH production

■ Resonant HH production predicted in a variety of models

□ from extended scalar sectors to exotic new physics


■ A broad mass range must be covered to ensure maximal sensitivity to new physics

□ complementarity of the different decay channels

46

HH is an ideal place to look for BSM physics 
Sensitive with current LHC data
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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An example: extended scalar sector with X→HH→bb𝜏𝜏
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■ Search strategy similar to the one used for nonresonant 
production

□ final discriminant: kinematic fit of the bb𝜏𝜏 system reconstruct mX

■ Resonant signal 
searched for 
masses up to 900 
GeV

□ at higher values 

the 𝜏𝜏 decay 
products overlap 
→ dedicated 
analysis for the 
high mass regime

Resonant HH analyses probe 
extended scalar sectors
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Resonant searches: status
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PLB 800 (2020) 135103 
PRL 122, 121803 (2019)
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Observed
Expected

CMS  (13 TeV)-135.9 fb

Spin-0

■ New resonances explored in a broad mass range up to 3 TeV

□ both spin 0 and spin 2 hypotheses


■ Complementarity between the final states in the low/medium/high mass regimes

□ same trend in the two experiments with some analysis-related differences


■ HH-like signatures (X→YH, X→YY) are not yet systematically explored at the LHC

□ they will give a new access to the exploration of extended scalar sectors
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HH in the quest for extended scalar sectors

■ In minimal extended scalar sector models such as the 
MSSM, HH is sensitive in the low tanβ region


■ Non-minimal models are yet largely unexplored at the 
LHC

□ HH and HH-like signatures (scalar-to-scalar decays) are 

characteristic signatures of these models
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Single H : input
■ Combination of single H measurements 

in various production modes and decay 
channels


■ Fiducial Higgs boson production modes 
and kinematics phase space regions: 
"simplified template cross section” 

■ The impact of λHHH corrections is 
evaluated for each process and bin

□ parametrise single H yields vs κλ, assume 

no relevant inter-bin changes w.r.t. SM

□ no differential effects available for ggF 

(expected small), single ttH bin 
⟹ limited access to differential 
information

50
Parameter normalized to SM value

10− 5− 0 5 10 15

Total Stat.

Syst. SM

 PreliminaryATLAS
-1 = 13 TeV, 36.1 - 79.8 fbs

| < 2.5
H

y = 125.09 GeV, |Hm

 = 89%
SM

p

           Total    Stat.    Syst.

ZZB ×, 0-jet H→gg )0.08−

0.09+ ,  0.15−

0.16+   (0.17−

0.18+  1.29  

ZZB × < 60 GeV H

T
p, 1-jet, H→gg )0.22−

0.23+ ,  0.35−

0.37+   (0.41−

0.43+  0.57  

ZZB × < 120 GeV H

T
p ≤, 1-jet, 60 H→gg )0.15−

0.18+ ,  0.31−

0.33+   (0.34−

0.38+  0.87  

ZZB × < 200 GeV H

T
p ≤, 1-jet, 120 H→gg )0.30−

0.39+ ,  0.65−

0.71+   (0.72−

0.81+  1.30  

ZZB × 200 GeV ≥ H

T
p 1-jet, ≥, H→gg )0.32−

0.43+ ,  0.64−

0.73+   (0.72−

0.84+  2.05  

ZZB × < 200 GeV H

T
p 2-jet, ≥, H→gg )0.26−

0.32+ ,  0.44−

0.46+   (0.51−

0.56+  1.11  

ZZB ×, VBF topo + Rest Hqq→qq )0.21−

0.27+ ,  0.32−

0.36+   (0.38−

0.45+  1.57  

ZZB ×, VH topo Hqq→qq )0.24−

0.32+ ,  1.11−

1.31+   (1.13−

1.35+ -0.12  

ZZB × 200 GeV ≥ 
j

T
p, Hqq→qq )0.72−

0.69+ ,  1.29−

1.34+   (1.48−

1.51+ -0.95  

ZZB × < 250 GeV 
T

Vp, νHl→qq )0.55−

0.71+ ,  0.85−

1.02+   (1.01−

1.24+  2.28  

ZZB × 250 GeV ≥ 
T

Vp, νHl→qq )0.66−

1.81+ ,  1.00−

1.44+   (1.19−

2.32+  1.91  

ZZB × < 150 GeV 
T

Vp, Hll→gg/qq )1.22−

0.76+ ,  0.98−

1.01+   (1.57−

1.26+  0.85  

ZZB × < 250 GeV 
T

Vp ≤, 150 Hll→gg/qq )0.70−

0.79+ ,  0.90−

1.02+   (1.13−

1.29+  0.86  

ZZB × 250 GeV ≥ 
T

Vp, Hll→gg/qq )0.71−

2.38+ ,  1.33−

1.87+   (1.50−

3.03+  2.92  

ZZB × ttH + tH )0.19−

0.24+ ,  0.27−

0.30+   (0.33−

0.39+  1.44  

2− 0 2 4 6 8
0.5

5

                      Total    Stat.     Syst.

ZZ
/BγγB )0.06−

0.07+ ,  0.11−

0.12+   (0.12−

0.14+  0.86  

ZZ
/B

bb
B )0.22−

0.27+ ,  0.18−

0.22+   (0.28−

0.35+  0.63  

ZZ/BWWB )0.11−

0.12+ ,  0.11−

0.13+   (0.16−

0.18+  0.86  

ZZ/B-τ+τB )0.14−

0.19+ ,  0.19−

0.22+   (0.24−

0.29+  0.87  

Figure 9: Best-fit values and uncertainties of the cross sections in each measurement region and of the ratios of
branching fractions B f /B4` , normalized to the SM predictions for the various parameters. The parameters directly
extracted from the fit are the products (�i ⇥ BZZ ) and the ratios B f /BZZ . The black error bar shows the total
uncertainty on each measurement.
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Single Higgs effects from λHHH
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degenerate with � ⇠ 6. The fact that the degeneracy appears at different values � for
different processes is important in order to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7. We plot (left)
�⌃�3 as a function of � for the decay widths of the relevant modes at the LHC, which
we denote as ���3 , and we show (right) the analogous quantity (�BR�3) for the Branching
Ratios (BRs). The quantity �BR�3(i) for the Higgs decay into the final-state i can be
conveniently written as
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H ! gg decay is not phenomenologically relevant, the total decay width does depend on
���3(gg), since �gg yields a non-negligible fraction (8.5 %) of �tot.
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H + HH : expected results
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H + HH : fixed vs floating κ

53

■ The combination of H 
and HH allows to retain 
sensitivity to κλ even 
when introducing 
additional degrees of 
freedom: HH needed to 
solve the degeneracy 
with other couplings


■ The best-fit values for 
all the couplings are 
compatible with the SM 
prediction
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Figure 5: Value of �2 ln⇤ as a function of � with W , Z , t , b, ` profiled (generic model) for the data (a) and
the Asimov dataset [46], generated assuming � = 1 from the likelihood distribution ⇤ with nuisance parameters
fixed to the best fit value obtained on data and the parameters of interest fixed to the SM hypothesis. The curves are
compared with the �-only model (where all l-modifiers are set to unity). The intersections of the dashed horizontal
lines, corresponding to �2 ln⇤ = 1 and �2 ln⇤ = 3.84, with the profile likelihood curve are used to define the ±1�
sigma uncertainty on � and the 95% CL, respectively.

Table 2: Best fit values for  modifiers with ±1� uncertainties for the �-only and generic models. The 95% CL
interval for � is also reported. For the fit result the upper row corresponds to the observed results, and the lower row
to the expected results obtained using Asimov datasets [46] generated under the SM hypothesis [46].
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�0.12 1.00+0.21
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6 Conclusion236

The Higgs boson self-coupling modifier � = �HHH/�SMHHH
has been constrained with a combination237

of single-Higgs analyses using data collected at
p

s = 13 TeV with an integrated luminosity of up to238

79.8 fb�1 [4] and double-Higgs analyses with an integrated luminosity of up to 36.1 fb�1 [9].239

Under the assumption that new physics a�ects only the Higgs boson self-coupling, the best fit value of240

the coupling modifier is � = 4.6+3.2
�3.8, excluding values outside the interval �2.3 < � < 10.3 at 95% CL241
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H + HH : input comparison

54

■ HH drives the 
sensitivity


■ ggF is the most 
sensitive single H 
production mode

□ sensitivity from total 

cross-section


■ ttH not sensitive for 
κλ > 0 because of 
the degeneracy 
(second minimum) in 
the cross-section
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Using the differential information in single H 

55

■ ttH: from the observation to fully differential information at the HL-LHC


■ The differential spectrum encodes information on κλ 
→ retains sensitivity also if μttH is left floating


■ Goal: extract the best sensitivity from a H + HH combination
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Fig. 80: Profile log-likelihood scan as a function of �. The individual contributions of the statistical
and systematic uncertainties are separated by performing a likelihood scan with all systematics removed.
Additionally, the contributions from the hadronic and leptonic channels have been separated, shown in
red and purple, respectively.

of data collected by CMS at the HL-LHC, this result shows that a constraint of �4.1 < � < 14.1 at
the 95% confidence level (CL) is achievable from the differential cross-section measurement of a single
Higgs boson decay channel produced in association with tops, using data from only one of the two
general purpose detectors at the HL-LHC.

The ttH + tH differential cross section measurements are also sensitive to other potential BSM
effects, such as those which give rise to anomalous top–Higgs couplings. A two-dimensional profile
log-likelihood scan is shown in Fig. 81 as a function of � and µH . The parameter µH is a multiplicative
scaling factor which is common to all Higgs boson production modes and all pT

H bins. Even with this
additional parameter, constraints on � are still achievable, owing to the information retained in the
shape of the pT

H distribution. The constraint on � is �7.1 < � < 14.1 at the 95% CL, when the
log-likelihood is also profiled with respect to µH .

3.5.3 Global fit48

Assuming that the trilinear coupling is the only coupling deviating from its SM value, single Higgs
observables can give competitive bounds with double Higgs production, see Refs. [365, 366, 367, 373,
370] 49. Nevertheless, departures of the Higgs self-coupling from its SM prediction signal the existence
of new dynamics that, in general, would leave an imprint on other Higgs couplings as well which have
a strong impact on the bound as shown by Ref. [368]. The importance of a global fit is therefore two-
fold, namely to assess the robustness of the studies that take into account deformations exclusively in the
Higgs trilinear coupling, and to single out the sensitivity on the single-Higgs couplings that is required
to minimise the impact of the possible correlations.

To include the effect of the different deformations away from the SM, we use the EFT frame-
work described in Ref. [368], where 9 parameters describe the deviations of the single-Higgs couplings.
In particular, we consider three50 parameters for the Yukawa interactions (�yt, �yb, �y⌧ ,), two for the
contact interactions with gluons and photons (cgg , c��), rescalings of the SM hZZ and hWW interac-

48 Contacts: S. Di Vita, G. Durieux, C. Grojean, J. Gu, Z. Liu, G. Panico, M. Riembau, T. Vantalon
49Electroweak processes where the Higgs trilinear coupling enter at the two loop level have also been studied in [374].
50If other fermionic decay channels can be observed, further parameters can be included, with no effect on the number of

degrees of freedom.
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Single H future prospects at the HL-LHC
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■ Extrapolation of the current measurements to 3 ab-1


□ under assumptions on the evolution of the systematic 
uncertainties and detector performance


■ Most couplings known at a precision of 2-4% !

□ with theory uncertainties as the dominant ones

□ stat. uncertainties remaining relevant for very rare 

processes
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Figure 1. Projected uncertainties on ki, combining
ATLAS and CMS: total (grey box), statistical (blue),
experimental (green) and theory (red). From Ref. [2].

These coupling measurements assume the absence of sizable
additional contributions to GH . As recently suggested, the patterns
of quantum interference between background and Higgs-mediated
production of photon pairs or four leptons are sensitive to GH .
Measuring the off-shell four-fermion final states, and assuming
the Higgs couplings to gluons and ZZ evolve off-shell as in the
SM, the HL-LHC will extract GH with a 20% precision at 68% CL.
Furthermore, combining all Higgs channels, and with the sole
assumption that the couplings to vector bosons are not larger than
the SM ones (kV  1), will constrain GH with a 5% precision at
95% CL. Invisible Higgs boson decays will be searched for at
HL-LHC in all production channels, VBF being the most sensitive.
The combination of ATLAS and CMS Higgs boson coupling mea-
surements will set an upper limit on the Higgs invisible branching
ratio of 2.5%, at the 95% CL. The precision reach in the mea-
surements of ratios will be at the percent level, with particularly
interesting measurements of kg/kZ, which serves as a probe of
new physics entering the H ! gg loop, can be measured with an
uncertainty of 1.4%, and kt/kg, which serves as probe of new
physics entering the gg ! H loop, with a precision of 3.4%.

A summary of the limits obtained on first and second gen-
eration quarks from a variety of observables is given in Fig. 2
(left). It includes: (i) HL-LHC projections for exclusive decays of
the Higgs into quarkonia; (ii) constraints from fits to differential
cross sections of kinematic observables (in particular pT); (iii)
constraints on the total width GH relying on different assumptions
(the examples given in the Fig. 2 (left) correspond to a projected limit of 200 MeV on the total width from the mass shift
from the interference in the diphoton channel between signal and continuous background and the constraint at 68% CL on the
total width from off-shell couplings measurements of 20%); (iv) a global fit of Higgs production cross sections (yielding the
constraint of 5% on the width mentioned herein); and (v) the direct search for Higgs decays to cc using inclusive charm tagging
techniques. Assuming SM couplings, the latter is expected to lead to the most stringent upper limit of kc / 2. A combination of
ATLAS, CMS and LHCb results would further improve this constraint to kc / 1.

The Run 2 experience in searches for Higgs pair production led to a reappraisal of the HL-LHC sensitivity, including several
channels, some of which were not considered in previous projections: 2b2g , 2b2t , 4b, 2bWW, 2bZZ. Assuming the SM Higgs

Figure 2. Left: Summary of the projected HL-LHC limits on the quark Yukawa couplings. Right: Summary of constraints on
the SMEFT operators considered. The shaded bounds arise from a global fit of all operators, those assuming the existence of a
single operator are labeled as "exclusive". From Ref. [2].
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■ HH driving the sensitivity on 
κλ at the HL-LHC


■ Large differences from 
single Higgs measurements 
assuming κλ-only variations 
or globally fitting all 
coupling modifications
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The HL-LHC view of λHHH

[ 0.3 , 1.8 ]
[ -0.3 , 3.3 ]

[ 0.2 , 2. ] � [6.3 , 7.2 ]
[ -0.4 , 8.2 ]

[ -0.5 , 5.8 ]
[ -1.5 , 7.7 ]

[ -1.2 , 7.4 ]
[ -2.7 , 8.7 ]

[ -1.1 , 8.8 ]
[ -2.5 , 10.2 ]

[ 0.5 , 1.6 ]
[ 0.1 , 2.3 ]

[ -1.9 , 5.3 ]
[ -4.1 , 14. ]

[ -0.1 , 2.3 ]
[ -1.1 , 3.8 ]

[ -2. , 3.9 ]
[ -5. , 7. ]

[ 0.8 , 1.2 ]
[ 0.7 , 1.3 ]

[ 0.4 , 1.6 ]
[ -0.1 , 2.2 ]

[ -0.4 , 2.4 ]
[ -2. , 3.9 ]

p
p
�
h
h

in
d
ir
e
ct

p
p
�
h
h

in
d
ir
e
ct

H
L
-
L
H
C

H
E
-
L
H
C

68%CL

95%CL

-10 -5 0 5 10 15

bb��

bb��

bbbb

bbZZ

bbWW

combination

tth, h���

exclusive fit

global fit

combination

exclusive fit

global fit

��

Fig. 89: Summary plot for the different expected constraints on the Higgs boson self-coupling � at
HL-LHC and at HE-LHC. The dashed lines correspond to uncertainties on the values, when any.
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CMS detector Phase-2 upgrades

58

Trigger/DAQ 
750 kHz @ L1, 12.5 μs latency

7.5 kHZ @ HLT 

HGCal:

forward 
calorimeter 
High granularity

3D + timing information

Tracker 
High granularity

Reduced material budget

Extended coverage

Muon detectors 
Barrel DT and endcaps CSC 
electronics upgrade

New forward detectors

Barrel ECAL 
Front-end electronics upgrade

MIP timing detector 
Precision timing in the barrel and 
endcaps (~30 ps resolution)
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How about HHH?

59

■ Both high energy and high luminosity needed

□ √s = 100 TeV, 30 ab-1 (FCC)


■ Many possible final states!


□ Most interesting ones: bb bb bb (19.2%), bb bb 𝜏𝜏 (6.3%), bb bb 
WW2ℓ (0.98%), bb 𝜏𝜏 𝜏𝜏 (0.69%), bb bb 𝛾𝛾 (0.23%), bb 𝜏𝜏 WW2ℓ (0.21%)


■ Performance crucially depends on detector performance! (many 
final state objects)

□ need also forward coverage up to |η| ≈ 3.5


■ Sensitivity: at FCC, O(100%) precision on σHHH, λHHHH ∈ [-4, +16]

196
I.7.2.

Totalrates
in

the
SM

mh (GeV)
p

s = 7 TeV
p

s = 8 TeV
p

s = 13 TeV
p

s = 14 TeV
p

s = 100 TeV

124.5 0.112+3.5%
�12.5% ± 4.2% 0.176+2.9%

�10.7% ± 3.9% 0.786+1.3%
�4.5% ± 3.2% 0.968+1.7%

�4.6% ± 3.1% 87.2+7.9%
�7.3% ± 1.6%

125 0.110+3.5%
�12.5% ± 4.2% 0.174+2.9%

�10.6% ± 3.9% 0.775+1.5%
�4.3% ± 3.2% 0.949+1.7%

�4.5% ± 3.1% 82.1+7.9%
�7.4% ± 1.6%

125.09 0.109+3.5%
�12.8% ± 4.2% 0.174+2.8%

�10.6% ± 3.9% 0.772+1.7%
�4.5% ± 3.2% 0.949+1.8%

�4.8% ± 3.2% 82.1+8.3%
�7.6% ± 1.6%

125.5 0.107+3.3%
�12.9% ± 4.2% 0.172+2.9%

�10.4% ± 4.0% 0.762+1.3%
�4.5% ± 3.2% 0.937+1.5%

�4.5% ± 3.1% 81.9+8.2%
�7.6% ± 1.6%

Table 58: Cross section (in fb) for tt̄hh production at NLO QCD with the central scale µ0 = Mhh/2 [444]. The first uncertainty is the scale uncertainty and the second is
the PDF uncertainty based on the PDF4LHC15_nlo_mc set.

mh (GeV)
p

s = 7 TeV
p

s = 8 TeV
p

s = 13 TeV
p

s = 14 TeV
p

s = 100 TeV

124.5 0.00335+3.9%
�1.7% ± 6.2% 0.00551+5.6%

�3.2% ± 5.8% 0.0289+5.4%
�3.4% ± 4.6% 0.0365+4.4%

�1.6% ± 4.7% 4.44+5.2%
�5.6% ± 2.3%

125 0.00331+3.9%
�1.8% ± 6.1% 0.00538+5.3%

�3.0% ± 5.6% 0.0289+5.5%
�3.6% ± 4.7% 0.0367+4.2%

�1.8% ± 4.6% 4.44+2.2%
�2.8% ± 2.4%

125.09 0.00331+4.3%
�2.1% ± 6.3% 0.00540+5.4%

�3.1% ± 5.6% 0.0281+5.2%
�3.2% ± 4.5% 0.0364+3.7%

�1.3% ± 4.7% 4.43+2.0%
�2.6% ± 2.4%

125.5 0.00326+3.9%
�1.6% ± 6.1% 0.00521+5.5%

�3.4% ± 5.8% 0.0279+6.1%
�4.6% ± 6.4% 0.0359+3.8%

�1.6% ± 4.7% 4.43+2.1%
�2.6% ± 2.4%

Table 59: Signal cross section (in fb) for hhtj production at NLO QCD with the central scale µ0 = Mhh/2 [444]. The first uncertainty is the scale uncertainty and the
second is the PDF uncertainty based on the PDF4LHC15_nlo_mc set.

µ0
p

s = 7 TeV
p

s = 8 TeV
p

s = 13 TeV
p

s = 14 TeV
p

s = 100 TeV

Mhhh/2 12.03+17.8%
�16.3% ± 5.2% 17.99+16.5%

�15.4% ± 4.8% 73.43+14.7%
�13.7% ± 3.3% 86.84+14.0%

�13.2% ± 3.2% 4732+11.9%
�11.6% ± 1.8%

Mhhh 9.91+19.3%
�16.6% ± 5.3% 15.14+18.4%

�16.0% ± 4.7% 63.32+16.1%
�14.1% ± 3.4% 76.15+15.9%

�14.0% ± 3.2% 4306+14.0%
�12.3% ± 1.8%

Table 60: Signal cross section (in ab) for gg ! hhh at NLO QCD for mh = 125 GeV with µR = µF = µ0 [445]. The first uncertainty is the scale uncertainty and the
second is the PDF uncertainty based on the PDF4LHC15_nlo_mc set. aptobarn!
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FIG. 1: Example Feynman diagrams contributing to Higgs boson triple production via gluon fusion in the Standard Model.
The vertices highlighted with a blobs indicate either triple (blue) or quartic (red) self-coupling contributions.

FIG. 2: Total cross section ratio normalised to the Standard
Model values for gluon-fusion-initiated triple Higgs produc-
tion at 100 TeV obtained by varying the c3 and d4 parameters
independently (see Eq. 1). The Higgs boson mass was fixed
to mh = 125 GeV. The SM cross section at leading order is
⇠ 2.88 fb. The NNPDF23 nlo as 0119 parton density function
set was used.

If we apply further requirements to the final states
listed in Table I:

• to possess greater than 100 events at 30 ab�1 of
integrated luminosity,

• and all gauge bosons fully decay to leptons,

then we are left with the following interesting final states:
(bb̄)(bb̄)(bb̄), (bb̄)(bb̄)(⌧ ⌧̄), (bb̄)(bb̄)(WW2`), (bb̄)(⌧ ⌧̄)(⌧ ⌧̄),
(bb̄)(bb̄)(��), (bb̄)(⌧ ⌧̄)(WW2`). In particular, the ex-
pected combined number of events in the multi-b-jet
and multi-⌧ final states is ⇠45000 over the lifetime of
the FCC-hh, and will most likely provide valuable in-
formation on the triple Higgs boson process. In the
present study we focus on the rare but clean final state
(bb̄)(bb̄)(��).

III. EVENT GENERATION AND DETECTOR
SIMULATION

A. Detector simulation

In the hadron-level analysis that follows, we consider
all particles within a pseudorapidity of |⌘| < 5 and
pT > 400 MeV. We reconstruct jets using the anti-kt
algorithm available in the FastJet package [82, 83], with
a radius parameter of R = 0.4. We only consider jets
with pT > 40 GeV within |⌘| < 3.0 in our analysis. We
consider photons within |⌘| < 3.5 and pT > 40 GeV and
100% reconstruction e�ciency. The jet-to-photon mis-
identification probability is taken to be Pj!� = 10�3,
flat over all momenta above the pT cut and over all pseu-
dorapidities.† We also consider the mis-tagging of two
light jets to bottom-quark-initiated jets with a flat prob-
ability of 1% for each mis-tag, corresponding to a flat
b-jet identification rate of 80% and demand that they lie
within |⌘| < 3.0. We demand all photons to be isolated,
an isolated photon having

P
i pT,i less than 15% of its

transverse momentum in a cone of �R = 0.2 around it.
Finally, no detector-smearing e↵ects have been consid-
ered.

B. Event generation

Events for the hhh signal samples have been gen-
erated via the loop-induced module of the MadGraph
5/aMC@NLO package [84–88]. The SM loop model present
in MadGraph 5/aMC@NLO was modified to allow for de-
formations of the Higgs boson triple and quartic self-
couplings away from the SM values. All tree-level and
next-to-leading order (i.e. matched via the MC@NLO
method [89]) background processes have been gener-
ated using MadGraph 5/aMC@NLO, apart from the di-
Higgs plus jets (hh + jets) background, which was simu-
lated using HERWIG++ in conjunction with the OpenLoops

†
Note that the HL-LHC expectation has the approximate form

Pj!� = 0.0093 ⇥ e
�0.036pTj/GeV

[78]. For a pT ⇠ 40 GeV, this

gives approximately Pj!� ⇠ 2 ⇥ 10
�3

. Thus, the value employed

here is expected to be a reasonable approximation to future detec-

tor performance.
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FIG. 1: Example Feynman diagrams contributing to Higgs boson triple production via gluon fusion in the Standard Model.
The vertices highlighted with a blobs indicate either triple (blue) or quartic (red) self-coupling contributions.

FIG. 2: Total cross section ratio normalised to the Standard
Model values for gluon-fusion-initiated triple Higgs produc-
tion at 100 TeV obtained by varying the c3 and d4 parameters
independently (see Eq. 1). The Higgs boson mass was fixed
to mh = 125 GeV. The SM cross section at leading order is
⇠ 2.88 fb. The NNPDF23 nlo as 0119 parton density function
set was used.

If we apply further requirements to the final states
listed in Table I:

• to possess greater than 100 events at 30 ab�1 of
integrated luminosity,

• and all gauge bosons fully decay to leptons,

then we are left with the following interesting final states:
(bb̄)(bb̄)(bb̄), (bb̄)(bb̄)(⌧ ⌧̄), (bb̄)(bb̄)(WW2`), (bb̄)(⌧ ⌧̄)(⌧ ⌧̄),
(bb̄)(bb̄)(��), (bb̄)(⌧ ⌧̄)(WW2`). In particular, the ex-
pected combined number of events in the multi-b-jet
and multi-⌧ final states is ⇠45000 over the lifetime of
the FCC-hh, and will most likely provide valuable in-
formation on the triple Higgs boson process. In the
present study we focus on the rare but clean final state
(bb̄)(bb̄)(��).

III. EVENT GENERATION AND DETECTOR
SIMULATION

A. Detector simulation

In the hadron-level analysis that follows, we consider
all particles within a pseudorapidity of |⌘| < 5 and
pT > 400 MeV. We reconstruct jets using the anti-kt
algorithm available in the FastJet package [82, 83], with
a radius parameter of R = 0.4. We only consider jets
with pT > 40 GeV within |⌘| < 3.0 in our analysis. We
consider photons within |⌘| < 3.5 and pT > 40 GeV and
100% reconstruction e�ciency. The jet-to-photon mis-
identification probability is taken to be Pj!� = 10�3,
flat over all momenta above the pT cut and over all pseu-
dorapidities.† We also consider the mis-tagging of two
light jets to bottom-quark-initiated jets with a flat prob-
ability of 1% for each mis-tag, corresponding to a flat
b-jet identification rate of 80% and demand that they lie
within |⌘| < 3.0. We demand all photons to be isolated,
an isolated photon having

P
i pT,i less than 15% of its

transverse momentum in a cone of �R = 0.2 around it.
Finally, no detector-smearing e↵ects have been consid-
ered.

B. Event generation

Events for the hhh signal samples have been gen-
erated via the loop-induced module of the MadGraph
5/aMC@NLO package [84–88]. The SM loop model present
in MadGraph 5/aMC@NLO was modified to allow for de-
formations of the Higgs boson triple and quartic self-
couplings away from the SM values. All tree-level and
next-to-leading order (i.e. matched via the MC@NLO
method [89]) background processes have been gener-
ated using MadGraph 5/aMC@NLO, apart from the di-
Higgs plus jets (hh + jets) background, which was simu-
lated using HERWIG++ in conjunction with the OpenLoops

†
Note that the HL-LHC expectation has the approximate form

Pj!� = 0.0093 ⇥ e
�0.036pTj/GeV

[78]. For a pT ⇠ 40 GeV, this

gives approximately Pj!� ⇠ 2 ⇥ 10
�3

. Thus, the value employed

here is expected to be a reasonable approximation to future detec-

tor performance.

Depends also on trilinear coupling

8

hhh total |N(SM)�N(c6)|p
N(SM)

SM 9.7 31.3
c6 = 1.0 1.1 20.2 ⇠ 2.0
c6 = �1.0 22.5 45.1 ⇠ 2.5

TABLE V: The number of events for an integrated luminosity
of 30 ab�1 at 100 TeV, for the Standard Model and the the
two simple deformations with O6, with coe�cient values c6 =
±1. The first and second columns show, respectively, the
number of events for the hhh signal and the total expected
number of events for all contributing processes: hhh, hh+jets,
bb̄bb̄�� (using 8.2 events) and bb̄bb̄�+jets (using 1 event). The
third column shows, approximately, the level (in number of
standard deviations) at which the two hypotheses c6 = ±1 can
be excluded given that the standard model is the underlying
theory.

d4 = 6c3 line and check that the outer 2�-region: c6 . �2
and c6 & 3 approximately reproduces the D = 6 EFT
result given the uncertainties. A few interesting observa-
tions can be made. Firstly, the whole region c3 . �1 can
be excluded at 5� irrespective of the value of d4 using
triple Higgs production. Moreover, if c3 is constrained
to lie near c3 ⇠ 0, then the weakest constraints on d4

are obtained in all of the plane. On the other hand, if a
non-zero value of c3 is measured, e.g. c3 ⇠ 4, then the
constraint on d4 can be quite stringent and in a region
excluding d4 = 0, i.e. d4 2 [⇠ 4,⇠ 8] at 5�.

(a)

FIG. 6: The approximate expected 2� (blue) and 5� (red) ex-
clusion regions on the c3�d4 plane after 30 ab�1 of integrated
luminosity, derived assuming a constant signal e�ciency, cal-
culated along the d4 = 6c3 line in c3 2 [�3.0, 4.0].

V. DISCUSSION AND CONCLUSIONS

Evidently, discovering Standard Model-like triple
Higgs boson production will be a challenging task. Our
analysis of the hhh ! (bb̄)(bb̄)(��) channel has demon-
strated that the process merits serious investigation at a
future collider running at 100 TeV proton-proton centre-
of-mass energy. It is important at this point to emphasise
the defining points and caveats that lead this phenomeno-
logical analysis to this conclusion:

• The detector of an FCC-hh needs to have excel-
lent photon identification and resolution, so that a
di-photon invariant mass window of width 2 GeV
around the Higgs boson mass can imposed. As we
already mentioned, the current resolution at the
LHC is 1-2 GeV, [99, 100]. Moreover, the pro-
jections for photon identification e�ciency at the
high-luminosity LHC are at O(80%) [101]. It is not
unreasonable to expect an improvement in both of
these parameters at the FCC-hh, to a resolution of
. 1 GeV or photon identification of & 90%.

• Tagging of b-jets should be extremely good, at least
in the range of 70-80%, with excellent light jet re-
jection of O(1%) over a wide range of transverse
momenta and pseudorapidities. Reducing the tag-
ging probability from 80% to 70% would reduce the
final number of events in ‘true’ 4-b-jet final states
by about 40%. We note that the expected perfor-
mance of the b-tagging algorithms for the LHC Run
2 is already at this ballpark [102].

• Any analysis of triple Higgs production that in-
cludes bb̄ pairs will also benefit from a very good
forward coverage, allowing identification of b-jets
up to pseudo-rapidities of |⌘| ⇠ 3.0. Good forward
coverage for photons to |⌘| ⇠ 3.5 would also bene-
fit the analysis. For example, the fraction of signal
events with two b-jets falling in |⌘b| 2 [2.5, 3.0] is
⇠ 15% and the fraction of events with two photons
falling in |⌘� | 2 [2.5, 3.5] is ⇠ 5%. These two are
approximately uncorrelated, and thus an LHC-like
coverage of |⌘b| < 2.5, |⌘� | < 2.5 would cause a
⇠ 20% reduction in signal e�ciency compared to
the analysis presented in this article.

• Predictions of the triple Higgs boson production
cross section, as for the case of double production,
posses large theoretical uncertainties at present,
due to the unknown higher-order corrections. The
best available calculation includes only exact real
emission diagrams in combination with ‘low-energy
theorem’ results [15]. A full next-to-leading order
calculation will reduce this and allow one to use the
process to extract constraints on various models of
new physics.

• Crucially, the Monte Carlo event generation of mul-
tiple coloured partons (4-6) at next-to-leading or-


