

Gluons exploration using J/ ψ photo-production and development of hybrid gaseous detectors

Aude Glaenzer - DPhN / IRFU / CEA-Saclay supervised by F. Bossu and M. Winn

What is a UPC = Ultra Peripheral Collision?

- Ultrarelativistic system
- Large impact parameter $(b > R_1 + R_2)$
- No nuclear overlap
- Photon induced reactions dominate

In p-Pb UPC, lead-ion is most likely (~95%) the photon source

J/ψ photoproduction at high energy

- The virtual photon fluctuates in a $q\bar{q}$ dipole
- via the exchange of 2 gluons
- From this interaction a vector meson (here J/ψ) is produced

• The J/ ψ then decays to di-leptons

• The virtual photon interacts with the proton and probes its internal structure

J/ψ photoproduction in ALICE

- $p-\gamma^*$ center-of-mass energy given by $W_{\gamma^*p} = 2E_p M_{J/\Psi} e^{-y}$ where y is the rapidity of the J/ Ψ defined according to the proton beam
- 2 energy configurations:

the J/ ψ goes in the direction of the proton: 27 GeV < W_{γ^*p} < 58 GeV

GDR QCD - March 2021

the J/ ψ goes in the direction of the Pb ion: 702 GeV < W_{γ^*p} < 1486 GeV

The target is probed at the longitudinal momentum fraction (analogous to the Bjorken-xof DIS)

• 2 energy configurations:

the J/ ψ goes in the direction of the proton: 27 GeV < W_{γ^*p} < 58 GeV

What are we probing?

 $x_{\mathbb{P}} \propto W_{\gamma^* D}^{-2}$

the J/ ψ goes in the direction of the Pb ion: 702 GeV < $W_{\gamma^* p}$ < 1486 GeV

J/ψ photoproduction

exclusive: the proton remains in the same quantum state

Physically: we measure the average structure (configurations) of the proton

 $\frac{d\sigma^{\gamma^* p \to J/\Psi \ p}}{dt} \propto |\langle A^{\gamma^* p \to J/\Psi \ p} \rangle|^2$

dissociative: initial and final states are required to be different

Physically: we measure the fluctuations of the configurations of the proton

 $\frac{d\sigma^{\gamma^* p \to J/\Psi X}}{dt} \propto \langle |A^{\gamma^* p \to J/\Psi p}|^2 \rangle - |\langle A^{\gamma^* p \to J/\Psi p} \rangle|^2$

Saturation

GDR QCD - March 2021

Saturation

ref: L.V. Gribov, E.M. Levin, and M.G. Ryskin, Phys. Rept. 100 (1983) 1.

Black disk limit

Non–linear effects

GDR QCD - March 2021

Selection of data

- ZDC = Zero Degree Calorimeter
- SPD = Silicon Pixel Detector
- VZERO = scintillator arrays

Signal reconstruction

- Signal reconstructed from dimuon pairs
- continuum, $\gamma\gamma \rightarrow \mu^-\mu^+$)

• Mass fit with a Crystal Ball $(J/\Psi \rightarrow \mu^- \mu^+)$ and an exponential function (dimuon

pt distribution for J/Ψ with weights Events / (0.1 dimuon continuum: 250 PbPb200 γ^* 150 100 μ γ^* 50 0 5670 Dimuon p_T (GeV/c) 3 0 2

Different contributions in J/ ψ peak

• The different contributions in the J/ ψ different p_T distribution

11

 \bullet The different contributions in the J/ ψ peak can be discriminated because of their

p_ distributions

Current study and next

- Ongoing analysis: computation of efficiency, luminosity, and systematics done
- Currently: computation of the cross section (both exclusive and inclusive)
- One of my interests also lies in the development of future particle physics experiments, which will investigate further the proton structure, gluon saturation... Like EIC

Micromegas and GEMs for TPC readout

- A solution based on a TPC + Barrel detectors is considered for an EIC detector
- TPC readout planes equipped with Micromegas / GEMs are under consideration
- R&D of readout detectors for TPC application
 - good energy resolution, < 20%</p>
 - ▶ gain ~ 2.e3
 - ▶ low IBF ~ 0.3%
- Simulation and tests on hybrid detectors
- Goal of energy resolution < 20%, gain ~ 2.e3 and low IBF ~ 0.3% reached and more tests are ongoing

Thank you for you attention!

Back up ALICE

Has this measurement been done before?

- HERA: H1 and ZEUS have measured the cross section of J/ ψ photoproduction at energies W_{γ^*p} from 20 to 305 GeV
 - Results are inconclusive regarding the question of gluon saturation: data can be described with or without it
- @LHC, LHCb studied the same process in p-p collisions (symmetric system : impossible to identify the photon emitter)
- @LHC, ALICE studied this in 2013 in p-Pb collisions for W_{γ^*p} up to 700 GeV

GDR QCD - March 2021

So what's new?

- allowing to reach up to $W_{\gamma^*p} = 1500 \text{ GeV}$
- Pb-p) in 2016
- Inclusive J/ψ contribution in UPCs has not been studied in ALICE yet
- at HERA)

GDR QCD - March 2021

In this analysis (2016 data), the CM energy in the p-Pb system is $\sqrt{s} = 8.16$ TeV (5 TeV in 2013),

Luminosity went from 3.9 nb⁻¹ in p-Pb (4.5 nb⁻¹ in Pb-p) in 2013 to 7.6 nb⁻¹ in p-Pb (11.9 nb⁻¹ in

Different kinematic regime: $x \sim 8 \times 10^{-6}$ ($x \sim 4 \times 10^{-5}$ with 2013 data, gluon PDFs probed at $x \sim 10^{-4}$

Exclusive J/ψ photoproduction

In Good-Waker formalism (<u>https://arxiv.org/abs/2001.10705</u>) • exclusive: the proton remains in the same quantum state $\frac{d\sigma^{\gamma^* p \to J/\Psi \ p}}{dt} \propto \sum |\langle i | A | i \rangle|^2 = |\langle A^{\gamma^* p \to J/\Psi \ p} \rangle|^2$

Physically: we measure the average structure (configurations) of the proton

- For small $q\bar{q}$ at leading twist, leading $\ln(1/x)$, $t \to 0 \frac{d\sigma}{dt} (\gamma^* p \to J/\Psi p) \Big|_{t=0} \propto [xg(x, Q^2)]^2$
 - Extraction of gluon PDF

• $\frac{d\sigma}{dt} \propto \exp(-b|t|)$

Measurement of impact parameter

- (= Fourier conjugate of $t \simeq -p_T^2$)
- Measurement of J/ψ polarisation
 - Decomposition of proton spin?
- Measurement of gluon generalized parton distribution at low x?

Inclusive J/ψ photoproduction

In Good-Waker formalism (<u>https://arxiv.org/abs/2001.10705</u>) inclusive: initial and final states are required to be different $d\sigma^{\gamma^*p \to J/\Psi X}$ $\frac{1}{dt} \propto \sum_{i} \sum_{f \neq i} |\langle f | A | i \rangle|^2 = \sum_{i} \sum_{f} \langle i | A^* | f \rangle \langle f | A | i \rangle - \sum_{i} \langle i | A^* | i \rangle \langle i | A | i \rangle$ $= \sum_{i} \langle i | A^*A | i \rangle - \sum_{i} | \langle i | A | i \rangle |^2$ $= \langle |A^{\gamma^* p \to J/\Psi} p|^2 \rangle - |\langle A^{\gamma^* p \to J/\Psi} p \rangle|^2$

Physically: we measure the fluctuations of the configurations of the proton

- The parton density increases with decreasing momentum fraction x
 - Saturation at low x?

Back-up R&D Micromegas

Micromegas / GEM

• MicroMEGAS : Micro-MEsh GASeous structure

Amplification below the mesh (NIM A 376 (1996) 29-35)

GDR QCD - March 2021

Amplification in the holes (NIM A 386 (1997) 531-534)

HV

 HV_2

Electrons

Micromegas / GEM

• MicroMEGAS : Micro-MEsh GASeous structure

Amplification below the mesh (NIM A 376 (1996) 29-35)

GDR QCD - March 2021

• GEM: Gas Electron Multiplier

Amplification in the holes (NIM A 386 (1997) 531-534)

٧ı

ΗV₂

ElectronsIons

Electron avalanche simulations

Gain = number of electrons that reach the bottom of the detector

GDR QCD - March 2021

Simulations for simple Micromegas

• drift lines

GDR QCD - March 2021

GDR QCD - March 2021

Goal: design hybrid detectors that would reduce this ion backflow while keeping a gain $\sim 10^3$