Extraction of unpolarised TMDs from experimental data

Valerio Bertone

IRFU, CEA, DPhN, Université Paris-Saclay

March 10, 2021, Assemblée Générale du QCD

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

TMD factorisation (for DY)

• At small values of $q_{\rm T}$, TMD factorisation applies:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2)$$

The single TMD distributions are given by:

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_T; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) : A$$

$$\times \exp\left\{K(b_T;\mu_b)\ln\frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} : B$$

TMD factorisation (for DY)
• At small values of
$$q_T$$
, TMD factorisation applies:

$$\begin{pmatrix} \frac{d\sigma}{dq_T} \end{pmatrix}_{\text{res.}} \xrightarrow{\text{TMD}} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2)$$
• The single TMD distributions are given by:

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_T; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \qquad : A$$

$$\times \exp\left\{K(b_T; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} \qquad : B$$
• matching onto the collinear PDFs at $b_T \ll 1/\Lambda_{\text{QCD}}$,
• factorises as *transverse* (perturbative) and *longitudinal* (*i.e.* collinear, non-perturbative).

- CS and RGE evolution,
- evolution to large $b_{\rm T}$,
- perturbative.

TMD factorisation (for DY)

At small values of q_{T} , TMD factorisation applies:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2)$$

The single TMD distributions are given by:

 $F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \qquad \left(\mu_b = 2e^{-\gamma_E}/b_*\right) : A$

$$\times \exp\left\{K(b_{\ast};\mu_{b})\ln\frac{\sqrt{\zeta_{F}}}{\mu_{b}} + \int_{\mu_{b}}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_{F} - \gamma_{K}\ln\frac{\sqrt{\zeta_{F}}}{\mu'}\right]\right\} : B$$

$$\times \left\{ \exp\left\{ g_{j/P}(x,b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}} \right\} \right\}$$

- Introduce the b_* prescription to avoid the Landau pole,
- introduce f_{NP} to account for the introduction of the b_* prescription,
- $f_{\rm NP}$ "parametrises" the non-perturbative transverse modes,
- **fit** $f_{\rm NP}$ to data.

: C

Higher-order corrections

Measurements of q_T distributions have reached the **sub-percent level** uncs.:

State-of-the-art calculations are thus necessary to describe this data:

higher-order corrections (and possibly **matching** between **TMD** and **collinear**).

Higher-order corrections

State-of-the-art accuracy in the TMD region required:

Pavia 2019 (PV19): the settings

[Bacchetta et al., JHEP 07 (2020) 117, arXiv:1912.07550]
Functional form of the non-perturbative function:

$$f_{\rm NP}(x, b_T, \zeta) = \left[\frac{1-\lambda}{1+g_1(x)\frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x)\frac{b_T^2}{4}\right)\right] \exp\left[-\left(g_2 + g_{2B}b_T^2\right)\ln\left(\frac{\zeta}{Q_0^2}\right)\frac{b_T^2}{4}\right]$$

$$g_1(x) = \frac{N_1}{x\sigma} \exp\left[-\frac{1}{2\sigma^2} \ln^2\left(\frac{x}{\alpha}\right)\right] \quad \text{and} \quad g_{1B}(x) = \frac{N_{1B}}{x\sigma_B} \exp\left[-\frac{1}{2\sigma_B^2} \ln^2\left(\frac{x}{\alpha_B}\right)\right]$$

- a total of 9 free parameters.
- Complete treatment of the experimental uncertainties:
 - **correlated** systematics (additive and multiplicative) properly treated,
 - uncertainties deriving from **collinear PDFs** also included.
- Fits using all the available perturbative orders: **from NLL to N³LL**.
- **Full integration** over q_T , Q and y when required:
 - no narrow-width nor "middle-point" approximations.
- No ad hoc normalisation:
 - fit both shape and normalisation.
- Monte Carlo method for the experimental error propagation.

PV19 fit: Drell-Yan data

		Experiment	$N_{\rm dat}$	Observable	\sqrt{s} [GeV]	$Q \; [\text{GeV}]$	$y ext{ or } x_F$	Lepton cuts	Ref.
		E605	50	$Ed^{3}\sigma/d^{3}q$	38.8	7 - 18	$x_F = 0.1$	-	[79]
Eived to reat		E288 200 GeV	30	$Ed^{3}\sigma/d^{3}q$	19.4	4 - 9	y = 0.40	-	[80]
Fixed target		E288 300 GeV	39	$Ed^{3}\sigma/d^{3}q$	23.8	4 - 12	y = 0.21	-	[80]
		E288 400 GeV	61	$Ed^{3}\sigma/d^{3}q$	27.4	5 - 14	y = 0.03	-	[80]
RHIC		STAR 510	7	$d\sigma/dq_T$	510	73 - 114	y < 1	$\begin{array}{c} p_{T\ell} > 25 \text{ GeV} \\ \eta_{\ell} < 1 \end{array}$	-
		CDF Run I	25	$d\sigma/dq_T$	1800	66 - 116	Inclusive	-	[81]
		CDF Run II	26	$d\sigma/dq_T$	1960	66 - 116	Inclusive	-	[82]
		D0 Run I	12	$d\sigma/dq_T$	1800	75 - 105	Inclusive	-	[83]
revatron		D0 Run II	5	$(1/\sigma)d\sigma/dq_T$	1960	70 - 110	Inclusive	-	[84]
		D0 Run II (μ)	3	$(1/\sigma)d\sigma/dq_T$	1960	65 - 115	y < 1.7	$\begin{aligned} p_{T\ell} > 15 \text{ GeV} \\ \eta_{\ell} < 1.7 \end{aligned}$	[85]
	T	LHCb 7 TeV	7	$d\sigma/dq_T$	7000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[86]
		LHCb 8 TeV	7	$d\sigma/dq_T$	8000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[87]
		LHCb 13 TeV	7	$d\sigma/dq_T$	13000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[92]
		CMS 7 TeV	4	$(1/\sigma)d\sigma/dq_T$	7000	60 - 120	y < 2.1	$\begin{array}{c} p_{T\ell} > 20 \text{ GeV} \\ \eta_{\ell} < 2.1 \end{array}$	[88]
		CMS 8 TeV	4	$(1/\sigma)d\sigma/dq_T$	8000	60 - 120	y < 2.1	$p_{T\ell} > 15 \text{ GeV}$ $ \eta_{\ell} < 2.1$	[89]
LHC		ATLAS 7 TeV	6 6 6	$(1/\sigma)d\sigma/dq_T$	7000	66 - 116	$\begin{aligned} y < 1 \\ 1 < y < 2 \\ 2 < y < 2.4 \end{aligned}$	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[93]
		ATLAS 8 TeV on-peak	6 6 6 6 6	$(1/\sigma)d\sigma/dq_T$	8000	66 - 116	$\begin{split} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{split}$	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[90]
		ATLAS 8 TeV off-peak	4 8	$(1/\sigma)d\sigma/dq_T$	8000	46 - 66 116 - 150	y < 2.4	$\begin{array}{c} p_{T\ell} > 20 \text{ GeV} \\ \eta_{\ell} < 2.4 \end{array}$	[<mark>90</mark>]
		Total	353	-	-	_	-	-	-
		L							

• Only data with $q_T / Q < 0.2$ (TMD factorisation region).

 $q_{
m T} ~[{
m GeV}]$

Experiment		$\chi^2_D/N_{ m dat}$	$\chi^2_\lambda/N_{ m dat}$	$\chi^2/N_{\rm dat}$
	7 GeV < Q < 8 GeV	0.419	0.068	0.487
E605	$8~{\rm GeV} < Q < 9~{\rm GeV}$	0.995	0.034	1.029
	$10.5~{\rm GeV} < Q < 11.5~{\rm GeV}$	0.191	0.137	0.328
	$11.5~{\rm GeV} < Q < 13.5~{\rm GeV}$	0.491	0.284	0.775
	$13.5~{\rm GeV} < Q < 18~{\rm GeV}$	0.491	0.385	0.877
	$4~{\rm GeV} < Q < 5~{\rm GeV}$	0.213	0.649	0.862
E288 200 GeV	$5~{\rm GeV} < Q < 6~{\rm GeV}$	0.673	0.292	0.965
	$6~{\rm GeV} < Q < 7~{\rm GeV}$	0.133	0.141	0.275
	$7~{\rm GeV} < Q < 8~{\rm GeV}$	0.254	0.014	0.268
	$8~{\rm GeV} < Q < 9~{\rm GeV}$	0.652	0.024	0.676
	$4~{\rm GeV} < Q < 5~{\rm GeV}$	0.231	0.555	0.785
	5 GeV < Q < 6 GeV	0.502	0.204	0.706
E288 300 GeV	$6~{\rm GeV} < Q < 7~{\rm GeV}$	0.315	0.063	0.378
11200 000 Gev	7 GeV < Q < 8 GeV	0.056	0.030	0.086
	8 GeV < Q < 9 GeV	0.530	0.017	0.547
	11 GeV < Q < 12 GeV	1.047	0.167	1.215
	5 GeV < Q < 6 GeV	0.312	0.065	0.377
	6 GeV < Q < 7 GeV	0.100	0.005	0.105
	7 GeV < Q < 8 GeV	0.018	0.011	0.029
E288 400 GeV	8 GeV < Q < 9 GeV	0.437	0.039	0.477
	11 GeV < Q < 12 GeV	0.637	0.036	0.673
	12 GeV < Q < 13 GeV	0.788	0.028	0.816
	13 GeV < Q < 14 GeV	1.064	0.044	1.107
STAR		0.782	0.054	0.836
CDF Run I		0.480	0.058	0.538
CDF Run II		0.959	0.001	0.959
D0 Run I		0.711	0.043	0.753
D0 Run II		1.325	0.612	1.937
D0 Run II (μ)		3.196	0.023	3.218
LHCb 7 TeV		1.069	0.194	1.263
LHCb 8 TeV		0.460	0.075	0.535
LHCb 13 TeV		0.735	0.020	0.755
CMS 7 TeV		2.131	0.000	2.131
CMS 8 TeV		1.405	0.007	1.412
	0 < y < 1	2.581	0.028	2.609
ATLAS 7 TeV	1 < y < 2	4.333	1.032	5.365
	2 < y < 2.4	3.561	0.378	3.939
	0 < y < 0.4	1.924	0.337	2.262
	0.4 < y < 0.8	2.342	0.247	2.590
ATLAS 8 TeV	0.8 < y < 1.2	0.917	0.061	0.978
on-peak	1.2 < y < 1.6	0.912	0.095	1.006
	1.6 < y < 2	0.721	0.092	0.814
	2 < y < 2.4	0.932	0.348	1.280
ATLAS 8 TeV	$46~{\rm GeV} < Q < 66~{\rm GeV}$	2.138	0.745	2.883
off-peak	$116~{\rm GeV} < Q < 150~{\rm GeV}$	0.501	0.003	0.504
Global		0.88	0.14	1.02

i Global χ^2 as a function of the perturbative accuracy:

Order	NLL	NLL'	NNLL	NNLL'	N ³ LL
χ ² / n.d.p.	~20	3.19	1.62	1.07	1.02

Clear perturbative convergence.

Conclusions and outlook

- A lot of effort is being invested on the extraction of TMD PDFs and FFs:
 - wide and precise **datasets** (LHC and Tevatron exps., COMPASS, HERMES),
 - very accurate **theoretical computation** (N³LL at small q_T),
- Current precision of data does require the most accurate **calculations**:
 - ø perturbative convergence.
- A sound treatment of the **experimental** uncertainties is also required:
 - correlated systematics,
 - collinear PDF uncertainties.
- Outstanding issues concerning SIDIS data from COMPASS/HERMES.
- Also **e+e- annihilation** data will be considered to constrain TMD FFs.
- **Current experiments** have still much to say on TMDs.
- Looking forward to the EI(c)C for more data to constrain TMDs.