Cold nuclear matter effects in Drell-Yan process and ${\rm J}/\psi$ production at NA58

Anisa Khatun

IRFU CEA/Saclay

GDR QCD 2021

March 10, 2021

Introduction

- Suppression of heavy quarkonia is one of the most distinctive signatures of QGP in heavy-ion collisions.
- Suppression can also takes place in hadron-nucleus(hA) collisions due to cold nuclear matter(CNM) effects.
- hA collisions are important to disentangle the effects of QGP from CNM to interpret AA collisions.
- Quarkonia and Drell-Yan cross-sections in small systems like hadron-hadron(hh) and hA collisions are crucial tool for studying CNM effects.
- Measurements are done from fixed target to collider experiments (SPS, $\sqrt{s} \approx 20$ GeV to LHC, $\sqrt{s} = 8.16$ TeV)
- CNM effects are studied at COMPASS via Drell-Yan and J/ ψ production at $\sqrt{s}=$ 18.9 GeV.

Physics motivation

The cold nuclear effects in hA collisions characterized by nuclear modification factor: $R_{hA}(x_F) = \frac{1}{A} \frac{d\sigma_{hA}/dx_F}{d\sigma_{ha}/dx_F}$ (= 1 for no nuclear effects)

- Nuclear modification factor depends on nPDF, $f_i^{p/A} \neq f_i^p$
- nPDF depends on x, distinguishes among Nuclear Shadowing, Anti-Shadowing, EMC effects
- Parton Energy loss

Observations from previous fixed target experiments

- J/ψ is more suppressed than DY as a function of x_F and p_\perp
- Different CNM effects for J/ψ and DY [PRL 84 (2000) 3256]

Observations from previous experiments

- No scaling as a function of x₂ [Arleo, Naim, Platchkov, JHEP01(2019)129]
- J/ψ suppression depends on \sqrt{s}

- Coherent energy loss regime explains alone E866 J/ ψ data at \sqrt{s} = 38.7 GeV. [Arleo, Peign e, JHEP03(2013)122]
- Energy loss model explains the strong suppression at large x_F for DY. [Arleo, Naim, Platchkov, JHEP01(2019)129]

Parton energy loss effects

A high energy parton travelling in a medium can radiate gluons induced by the elastic scatterings with the constituents of the medium

Parton energy loss effects in different hard processes:

- Drell-Yan process: $hA \rightarrow \ell^+ \ell^- + X$
 - Initial state radiation
- Hadron production: hA
 ightarrow q/g(
 ightarrow h') + X
 - Initial state radiation
 - Final state radiation
 - Interference of both

Parton energy loss regimes

• Landau Pomeranchuk Migdal or the LPM effect (small formation time $t_f \leq L$)

 $\langle \epsilon \rangle_{LPM} \propto \alpha_s \hat{q} L^2$

- Drell-Yan process: $hA \rightarrow \ell^+ \ell^- + X$
- Full coherent parton energy loss effect (large formation time $t_f \gg L$)

 $\langle\epsilon
angle_{coherent}\propto\sqrt{\hat{q}L}/M.E\gg\langle\epsilon
angle_{LPM}$

• Quarkonium production: $hA
ightarrow [Q\hat{Q}(g)]_8 + X$

Transport coefficient : The scattering properties of the medium, depends on x_F and p_{\perp} distribution

$$\hat{\boldsymbol{q}} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho \times \boldsymbol{x} \boldsymbol{G}(\boldsymbol{x}, \boldsymbol{Q}^2), \hat{\boldsymbol{q}} \equiv \frac{\mu^2}{\lambda} = \frac{\mathrm{d}\Delta \mathrm{p}_{\perp}^2}{\mathrm{d}\mathrm{L}}$$

Single \hat{q} to study both energy loss effects and p_{\perp} broadening. These nuclear effects are worth investigating with COMPASS DY data.

COMPASS experimental set up

Beam

- π^- beam at 190 GeV
- $I_{beam} \approx 7 \times 10^7 hadrons.s^{-1}$

Target setup and data sample

Nuclear targets

1. Ammonia (NH_3) 2. Aluminium (AI^{27}) 3. Tungsten (W^{184})

- "Light" nuclei Mixed between ammonia and helium
- "Intermediate nuclei" Aluminium 7cm length target
- "Heavy nuclei" Tungsten first 10 cm used

Data from 2018 have been analyzed

Observable

The double differential cross section of ${\rm J}/\psi$ and DY production is given by

$$\frac{d^2 \sigma^{\pi^- A}}{dx_F dp_{\perp}} = \frac{N_{\rm events}^{\mu^+ \mu^-}(x_F, p_{\perp})}{\epsilon^{tot}.BR.\Delta x_F.\Delta p_{\perp}.\mathcal{L}}$$

with

$$\begin{split} \mathcal{L} &= \alpha^{i} \Phi^{0} \times L_{eff}^{i} \times \rho^{i} \times \frac{\mathcal{N}_{A}}{M^{i}} \\ \mathcal{R}_{\pi^{-}A}(A/B) &= \frac{N_{A}(\mathbf{x}_{\mathrm{F}},\mathbf{p}_{\perp})}{\epsilon_{A}.\alpha^{A}.L_{eff}^{A}.\rho^{A}} / \frac{N_{\mathrm{B}}(\mathbf{x}_{\mathrm{F}},\mathbf{p}_{\perp})}{\epsilon^{B}.\alpha^{B}.L_{eff}^{B}.\rho^{B}} \end{split}$$

- Observable independent of Φ^0 absolute initial flux.
- The ratio of cross-section of tungsten and aluminium is calculated to estimate the $R_{\pi^-A}(x_F, p_{\perp})$

Invariant mass of dimuon

- $\sim 4X10^5$ dimuon events in Al target
- $\sim 2.3X10^6$ dimuon events in W target

- Invariant dimuon mass spectra is shown for one period(out of 9) of data.
- The normalization of each dimuon mass distribution depends on the target.
- Resolution of J/ψ peak varies around M \sim 3 GeV depending on target.

J/ψ signal extraction: "Cocktail Method" from MC

- In order to reproduce the dimuon invariant mass spectrum, the contributions OC, DY, J/ψ , $\psi(2S)$ are fitted to the RD dimuon mass spectrum: "cocktail method"
- The normalisation of CB is fixed to 1 because this contribution is calculated from the RD

Fit function for $M>2\ \text{GeV}$

$$f(M)_{fit} = \alpha_0 f(M)_{MC}^{DY} + \alpha_1 f(M)_{fit}^{J/\psi} + \alpha_2 f(M)_{MC}^{\psi(2S)} + \alpha_3 f(M)_{MC}^{OC} + \alpha_4 f(M)_{RD}^{CB}$$

 $\alpha_0 \alpha_1 \alpha_2$ and α_3 are free parameters, and α_4 is fixed to 1. In order to take into account the underestimated resolution of J/ψ signal in MC,

$$f(M)_{fit}^{J/\psi} = f(M)_{MC}^{J/\psi} \times \mathcal{N}e^{-\frac{(M-\mu)^2}{2\sigma^2}}$$

where σ , μ and \mathcal{N} are free parameters.

J/ψ signal extraction: "Cocktail Method" from MC Integrated dimuon mass fit for all $0 < x_F < 0.9$ and $0 < p_T < 4$ (GeV)

$$N^{J/\psi} =$$
76701 ± 277
 $\chi^2/ndf = 2.9$ (W Target)

 $N^{J/\psi} = 11913 \pm 109$ $\chi^2/ndf = 2.6$ (Al Target)

J/ψ extraction as a function of x_F and p (W target) Example of signal extraction of J/ψ in 0.1 < x_F < 0.2 for P01 period in W target.

Drell-Yan analysis

- Suitable at the high mass region M \in (4.7,8.5) GeV, DY purity 97%
- The J/ ψ and DY events are corrected by the geometrical acceptance, trigger, detector efficiency etc.
- Correction due to migration of events from W to Al target is also taken in to account.

Preliminary results at COMPASS [C-J. Naim, PhD. Thesis (2020)]

- J/ψ more suppressed than DY
- DY suppression 20% at $x_F \sim 0.9$
- Strong suppression at large x_F indicates energy loss effects.

Outlook

- \bullet Preliminary results of nuclear dependence of ${\rm J}/\psi$ data have been calculated for W and Al targets.
- Preliminary results for nuclear dependence of DY are also available.
- Nuclear target dependence is observed.
- Cross-check of these preliminary results is going on.
- To finalise the results with newly reconstructed data and fine tune MC.
- To investigate these effects in *NH*₃ target as well.

Thank You for your attention.

Extras

Theoretical model model comparison of data

• Coherent energy loss regime explains alone E866 J/ ψ data at \sqrt{s} = 38.7 GeV. [Arleo, Peign e, JHEP03(2013)122]