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Deeply virtual Compton scattering and the structure of hadrons

Deeply virtual Compton scattering (DVCS) is the scattering of a lepton on a hadron via a
photon of large virtuality, producing a real photon in the final state.
® x is the average light-front plus-momentum (longitudinal momentum in a fast moving
hadron) fraction of the struck parton
® ¢ describes the light-front plus-momentum transfer, linked to Bjorken’s variable xg
e t = A? is the total four-momentum transfer squared

»(r) P r(p) p(»")

Tree-level depiction of DVCS for x > |£]| (left) and & > |x| (right)




Deeply virtual Compton scattering and the structure of hadrons

Similarly to the introduction of parton distribution functions (PDFs) in the study of DIS,
® For a large photon virtuality Q% = —q?, finite xg and small total four-momentum transfer
squared t, factorisation theorems describe DVCS in terms of a hard scattering part
computable thanks to perturbative QCD, and a soft non-perturbative part described by
generalised parton distributions (GPDs).
® The amplitude of DVCS is parametrised by Compton form factors (CFFs) F, which
write as convolutions of perturbative coefficient functions 77 and the GPDs F?:

CFF convolution (leading twist)

Fen= Y [ En(iGaw@)Fnener @

parton type a

?F&(x, &, t, u?)/x for the usual definition of gluon GPD
w is the factorisation / renormalisation scale, as the strong coupling. HM
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Deeply virtual Compton scattering and the structure of hadrons

GPDs allow access to gravitational form factors of the energy-momentum tensor (EMT) —
first data-driven extractions of mechanical properties of hadronic matter (e.g. pressure
distribution) [Burkert, et al., 2018], [Kumericki, 2019], [Dutrieux, et al., 2021]
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Properties of generalised parton distributions

® Several types of GPDs: H, E, H, E, .. depending on helicity considerations.

® A GPD is a function of (x,&,t, u?), £&-even, with physical region (x,¢) € [~1,1]? and the
dependence on 12 is given by renormalisation group equations.

® The forward limit gives back the PDF:

HI(x,& = 0,t = 0, u?) = fy(x, 1?) (2)

® Polynomiality property: due to Lorentz covariance,

1 n+1
/ dx x"HI(x, €, t, u?) = Z H,?k(t7/$2)§k (3)
-1 k=0 even

This property implies that the GPD is the Radon transform of a double distribution F
(DD) with an added D-term on the support Q = {(3,«) | |3] + |a| < 1}:

Double distribution formalism

HI(x, €, t, pu?) = /Qdﬁda 5(x — B — af) [F(B,a. t, i?) + &6(B)D(a, t, p?)] (4)




Deconvoluting a Compton form factor

Position of the problem

Assuming a CFF has been extracted from experimental data with excellent precision!, we are
left with the convolution:

1 2
/1 ng T ()5( c;,as(f)) Hi(x, & t,u%) = TI(Q, u?) ® H(u?) (5)

where T9 is a coefficient function computed in pQCD. Can we then " de-convolute” eq.
(5) to recover HI(x, &, t, u?) from T9(Q?, u?) ® HI(u?)?

'and the different gluon and flavour contributions have been separated, which probably
requires a global analysis with various targets and processes.




Deconvoluting a Compton form factor

® Question was raised 20 years ago. Evolution was proposed as a crucial element in
[Freund, 1999], but the question remains essentially open.

® We show that GPDs exist which bring contributions to the LO and NLO CFF of only
subleading order even under evolution. We call them LO and NLO shadow GPDs.

Definition of a LO shadow GPD

For a given scale u%,
VEVE, Tio(@?, 15) ® HI(pg) =0 and  HI(x,£ = 0,t=0,45) =0 (6)

so for @ and 2 close enough to p§, T/, (Q?, 1?) ® HI(u?) = O(as(k?)) (7)

® | et HY be a LO shadow GPD, and G9 be any GPD. Then G9 and
G9 + HY9 have the same forward limit, and the same LO CFF up to
a numerically small and theoretically subleading contribution.




Shadow GPDs at leading order

® We search for our shadow GPDs as simple double distributions (DD) F(5, a, 11?) to
respect polynomiality, with a zero D-term. Then, thanks to dispersion relations, we can
restrict ourselves to the imaginary part only Im T9(Q?, 3) ® H9(u3) = 0.

® We also omit t since it is untouched by the convolution.

® Leading order It is well-known that the LO CFF only probes the GPD on the x = £ line
and the D-term, so a LO shadow GPD is simply given by:

Im T6(@?, 1) © H(p) o HI(E €, ) = 0 (8)
H(x,& = 0,43) = 0 9)

where H9(*) denotes the singlet GPD (x-odd part of the GPD).




Shadow GPDs at leading order

® We search our DD as a polynomial of order N in (3, ), characterised by ~ N2
coefficients cmp:

ﬁ,Oé NO Z Cmn " (10)

m+n<N

® The associated GPD is obtained by the linear Radon transform, given by the matrix R for

x> el
N+1 N+1
1
+)x,,2=§ E w XY where “V_E R €mn
( 5 MO) ~ (1 +§) g)u a W q

Rmn —

i(—l)“*vﬂ' n j m+j+1
WL mtj+1\yj) \m—u+j+1)\v—n+j @
j=0 a
L/
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Shadow GPDs at leading order

® For our shadow GPD, we first want H9()(¢, &, 1i2) = 0, so we notice that

J’_
Hq(+) f §7M0 = Z W where kw = Z Cvl|lxv duv , Cvl|l/v = (_1)u+v+w (U i/ W)

w=1 u,v

Cancelling the LO CFF
Hq(+)(£7§7:u'(2)) =0 = (Cmn)m,n € ker(CR)




Shadow GPDs at leading order

Cancelling the LO CFF
HIH) (.6, 12) =0 = (Cmn)m.n € ker(C.R) (13)

® We then want H9(F)(x, & = 0, u2) = 0, so we notice that

N+1
HIH) (x,0, u3) = Z quwx" where q, = Z Q) qu, Qn =24,
w=0 u,v

Cancelling the forward limit

HIH) (x,€ = 0,12) =0 = (Cmn)m.n € ker(Q.R) (14)

— 7.
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Shadow GPDs at leading order

Cancelling the LO CFF

HIH) (€., 12) =0 = (Cmn)m.n € ker(C.R) (13)

V.

Cancelling the forward limit

HIH) (x,€ = 0,8) =0 = (Cmn)m.n € ker(Q.R) (14)

® Both linear systems C.R and Q.R are systems of ~ N equations for ~ N? variables, so
the number of solutions grows quadratically with N, order of the polynomial DD.




Shadow GPDs at leading order

Cancelling the LO CFF

HIE)(€,€,13) =0 = (Cmn)m,n € ker(C.R) (13)
Cancelling the forward limit
HI®) (x, 6 =0,2) =0 = (Cmn)m.n € ker(Q.R) (14)

4

LO shadow GPDs
Here is an example of an infinite family of LO shadow DDs, each being of degree N > 9 odd

= 2_ 2_ N2 —3N
P8y =B [0~ (M0 +07) ¢ ot (MO + HTR2A0 52t

4 2(N?>—11N+60 N—8 N2 —3N—28 1 N2 —15N+80 _ 2(N—8)
—§a2( W W B S w 54+56)+§(1_52)2(W_ N 52+ﬁ4)] (15)
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Shadow GPDs at next-to-leading order

® Next-to-leading order — original result The NLO CFF is composed of a collinear part
(compensating LO evolution applied to the tree-level LO CFF) and a genuine 1-loop NLO
part. An explicit calculation of each term for our polynomial double distribution gives that

Im T2 ,(Q? %) @ HI(1?) o

2 Ty N+1 k(co/l)
as(u?) log <QQ> [Iog <§> Im T/, @ HY(1?) + Z 1+§)] (16)

and assuming Im T}, ® H9(u?) =0,

Im T7(Q? 1?) @ HI(4?) o as(1?) [log <12€£> Im T2, @ HI(4?) + Z




Shadow GPDs at next-to-leading order

® Cancelling both terms gives rise to two additional systems with a linear number of
equations. The first NLO shadow GPD is found for N = 21, and adding the condition that
the DD vanishes at the edges of its support gives a first solution for N = 25 (see below).
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Color plot of an NLO shadow GPD at initial scale 1 GeV?, and its evolution
for ¢ = 0.7 up to 100 GeV? via APFEL++ and PARTONS [Bertone].




Shadow GPDs at next-to-leading order

® On a lever-arm in @2 of [1,10] GeV? (current and soon up-coming experimental data),
the NLO CFF generated by the NLO shadow GPD varies as O(a2(Q?)) and its numerical
value is of order 10~° (although the NLO shadow GPD is itself of order 1).

e Consider this Goloskov-Kroll GPD model (via PARTONS) at scale 4 GeV?

15 15
: = GK16 u(+)(x, xi = 0.1, mu~2 = 4 GeV"2) = GK16 u(+)(x, xi = 0.5, mu"~2 = 4 GeV"2)
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& =0.1 (left) and £ = 0.5 (right). The dotted line depicts x = &.




Shadow GPDs at next-to-leading order

® Now consider this GPD model

15 15
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& =0.1 (left) and £ = 0.5 (right). The dotted line depicts x = &.




Shadow GPDs at next-to-leading order

® The orange model is GK + 3 x our NLO shadow GPD. For £ close to 0 and x close to &,
by design, the two are very close, but vastly different otherwise. They give rise to NLO
CFFs which are exactly identical at this scale, and different by a negligible amount for

current Q? lever arm.
15 T 15

| = GK16 u(+)(x, xi = 0.1, mu"2 = 4 GeV"2) = GK16 u(+)(x, xi = 0.5, mu"2 = 4 GeV"2)
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Conclusion

® We have explicitly shown that, with current lever arm in Q2?, there exist LO and NLO
shadow GPDs of considerable size which present a very small and subleading contribution
to CFFs. The deconvolution of DVCS seems therefore ill-posed.

® |t is foreseeable that higher order DVCS, TCS or LO DVMP could present similar issues.

® On the contrary, higher order DVMP, DDVCS or Lattice QCD for instance could escape
this problem or significantly constrain it — interest of multi-channel analysis, and the
development of integrated analysis tools, like PARTONS.

® The increase in Q2 lever arm promised by the EIC / EICC will be very welcomed here and
for mechanical properties as well.

® Positivity constraints are also a significant tool to constrain the potential size of shadow
GPDs.
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Deeply virtual Compton scattering and the structure of hadrons

Physical interest of GPDs

Impact parameter distribution (IPD) [Burkardt, 2000]

R2A,
la(X7bJ_7:U’2) = / (271_;2_ e Pt Fa(x7 07 t = _Az 7/’62) (18)

is the density of partons with pluss-momentum x and transverse position b from the center of
plus momentum in a hadron — hadron tomography
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b [fm]

Moutarde, Sznajder, Wagner

Density of up quarks in an unpolarized proton from a parametric fit to DVCS Y
data in the PARTONS framework [Moutarde, Sznajder, Wagner, 2018] /

22/20



Deconvoluting a Compton form factor

Remark on renormalisation dependence

* H(Q?) =>",H(Q? u?) is not r.-dependent, but the separation in quark and gluon
contributions is. Y. T2(Q?, 1#?) ® H?(u?) has a residual r.-dependence unless T2 is
summed at all orders in perturbation. T2(Q?, u?) ® H?(112) has both an intrinsic and a
residual r.-dependence.

® |f the GPD evolution has been computed in a consistent way with coefficient functions,
the residual scale dependence of T, o(Q@?, 11?) ® H(1?) will be small, in the sense that,
for all Q2 and ,u2 close to Q2

ThnLo( @2 1%) @ HI(u?) = T 0(Q%, Q%) @ HI(Q?) = O(af™(Q%)  (19)
® If two very different GPDs have, for all Q2 in the experimental domain and p? close to

@2, the same N"LO CFF Ty, o(@?, 1) ® HI(1?) up to O(a2T1(Q?)), they will be very
difficult to distinguish from one another, both for numerical reasons

(a7T1(Q?) gets very small) and theoretical reasons (the difference /\
between the two is of the order of the systematic uncertainty created D,
by varying the renormalisation scale). 2320



Deconvoluting a Compton form factor

® This means

Thnio(Q%, 1%) @ HY (%) = TRayo( Q% 1°) © HI(Q%) = O(af™(Q%)  (20)

that is, by linearity
N"LO shadow GPDs

for all experimental Q2 and 2 close to @2, Ty, o(Q?, 1) ® HI(u?) = O(al™(Q?))
HI(x,& = 0,t = 0, 42) = 0
(21)

where HY = H — Hj. We call GPDs which satisfy eq. (21) N"LO shadow GPDs.

We have added the constraint that the forward limit is exactly the same /
since PDFs are very well known from precise DIS data. >
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