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Deeply virtual Compton scattering and the structure of hadrons

Deeply virtual Compton scattering (DVCS) is the scattering of a lepton on a hadron via a
photon of large virtuality, producing a real photon in the final state.
• x is the average light-front plus-momentum (longitudinal momentum in a fast moving

hadron) fraction of the struck parton
• ξ describes the light-front plus-momentum transfer, linked to Björken’s variable xB
• t = ∆2 is the total four-momentum transfer squared

Tree-level depiction of DVCS for x > |ξ| (left) and ξ > |x | (right)
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Deeply virtual Compton scattering and the structure of hadrons

Similarly to the introduction of parton distribution functions (PDFs) in the study of DIS,

• For a large photon virtuality Q2 = −q2, finite xB and small total four-momentum transfer
squared t, factorisation theorems describe DVCS in terms of a hard scattering part
computable thanks to perturbative QCD, and a soft non-perturbative part described by
generalised parton distributions (GPDs).

• The amplitude of DVCS is parametrised by Compton form factors (CFFs) F , which
write as convolutions of perturbative coefficient functions T a

F and the GPDs F a:

CFF convolution (leading twist)

F(ξ, t,Q2) =
∑

parton type a

∫ 1

−1

dx

ξ
T a
F

(
x

ξ
,
Q2

µ2
, αs(µ2)

)
F a(x , ξ, t, µ2)a (1)

aF g (x , ξ, t, µ2)/x for the usual definition of gluon GPD

µ is the factorisation / renormalisation scale, αs the strong coupling.
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Deeply virtual Compton scattering and the structure of hadrons

GPDs allow access to gravitational form factors of the energy-momentum tensor (EMT) →
first data-driven extractions of mechanical properties of hadronic matter (e.g. pressure
distribution) [Burkert, et al., 2018], [Kumericki, 2019], [Dutrieux, et al., 2021]

In green, 68% confidence interval found for∑
q d

q
1 (t = 0, µ2), a critical parameter to

evaluate pressure profiles and results obtained
by other studies (black markers). The
parameter is compatible with 0 with current
experimental data. [Dutrieux, et al., 2021]
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Properties of generalised parton distributions

• Several types of GPDs: H, E , H̃, Ẽ , ... depending on helicity considerations.
• A GPD is a function of (x , ξ, t, µ2), ξ-even, with physical region (x , ξ) ∈ [−1, 1]2 and the

dependence on µ2 is given by renormalisation group equations.
• The forward limit gives back the PDF:

Hq(x , ξ = 0, t = 0, µ2) = fq(x , µ2) (2)

• Polynomiality property: due to Lorentz covariance,∫ 1

−1
dx xnHq(x , ξ, t, µ2) =

n+1∑
k=0 even

Hq
n,k(t, µ2)ξk (3)

This property implies that the GPD is the Radon transform of a double distribution F
(DD) with an added D-term on the support Ω = {(β, α) | |β|+ |α| < 1}:

Double distribution formalism

Hq(x , ξ, t, µ2) =

∫
Ω
dβdα δ(x − β − αξ)

[
F (β, α, t, µ2) + ξδ(β)D(α, t, µ2)

]
(4)
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Deconvoluting a Compton form factor

Position of the problem
Assuming a CFF has been extracted from experimental data with excellent precision1, we are
left with the convolution:∫ 1

−1

dx

ξ
T q

(
x

ξ
,
Q2

µ2
, αs(µ2)

)
Hq(x , ξ, t, µ2) = T q(Q2, µ2)⊗ Hq(µ2) (5)

where T q is a coefficient function computed in pQCD. Can we then ”de-convolute” eq.
(5) to recover Hq(x , ξ, t, µ2) from T q(Q2, µ2)⊗ Hq(µ2)?

1and the different gluon and flavour contributions have been separated, which probably
requires a global analysis with various targets and processes.
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Deconvoluting a Compton form factor

• Question was raised 20 years ago. Evolution was proposed as a crucial element in
[Freund, 1999], but the question remains essentially open.

• We show that GPDs exist which bring contributions to the LO and NLO CFF of only
subleading order even under evolution. We call them LO and NLO shadow GPDs.

Definition of a LO shadow GPD

For a given scale µ2
0,

∀ξ,∀t,T q
LO(Q2, µ2

0)⊗ Hq(µ2
0) = 0 and Hq(x , ξ = 0, t = 0, µ2

0) = 0 (6)

so for Q2 and µ2 close enough to µ2
0, T

q
LO(Q2, µ2)⊗ Hq(µ2) = O(αs(µ2)) (7)

• Let Hq be a LO shadow GPD, and Gq be any GPD. Then Gq and
Gq + Hq have the same forward limit, and the same LO CFF up to
a numerically small and theoretically subleading contribution.
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Shadow GPDs at leading order

• We search for our shadow GPDs as simple double distributions (DD) F (β, α, µ2) to
respect polynomiality, with a zero D-term. Then, thanks to dispersion relations, we can
restrict ourselves to the imaginary part only Im T q(Q2, µ2

0)⊗ Hq(µ2
0) = 0.

• We also omit t since it is untouched by the convolution.

• Leading order It is well-known that the LO CFF only probes the GPD on the x = ξ line
and the D-term, so a LO shadow GPD is simply given by:

Im T q
LO(Q2, µ2

0)⊗ Hq(µ2
0) ∝ Hq(+)(ξ, ξ, µ2

0) = 0 (8)

Hq(x , ξ = 0, µ2
0) = 0 (9)

where Hq(+) denotes the singlet GPD (x-odd part of the GPD).
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Shadow GPDs at leading order

• We search our DD as a polynomial of order N in (β, α), characterised by ∼ N2

coefficients cmn:
F (β, α, µ2

0) =
∑

m+n≤N
cmn α

mβn (10)

• The associated GPD is obtained by the linear Radon transform, given by the matrix R for
x > |ξ|:

Hq(+)(x , ξ, µ2
0) =

N+1∑
u=1

1

(1 + ξ)u
+

1

(1− ξ)u

N+1∑
v=0

quv x
v where quv =

∑
m,n

Rmn
uv cmn (11)

Rmn
uv =

n∑
j=0

(−1)u+v+j

m + j + 1

(
n
j

)(
j

m − u + j + 1

)(
m + j + 1
v − n + j

)
(12)
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Shadow GPDs at leading order

• For our shadow GPD, we first want Hq(+)(ξ, ξ, µ2
0) = 0, so we notice that

Hq(+)(ξ, ξ, µ2
0) =

N+1∑
w=1

kw
(1 + ξ)w

where kw =
∑
u,v

Cuv
w quv , Cuv

w = (−1)u+v+w

(
v

u − w

)

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (13)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (14)
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (13)

• We then want Hq(+)(x , ξ = 0, µ2
0) = 0, so we notice that

Hq(+)(x , 0, µ2
0) =

N+1∑
w=0

qwx
w where qw =

∑
u,v

Quv
w quv , Quv

w = 2δvw

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (14)
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (13)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (14)

• Both linear systems C .R and Q.R are systems of ∼ N equations for ∼ N2 variables, so
the number of solutions grows quadratically with N, order of the polynomial DD.
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (13)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (14)

LO shadow GPDs

Here is an example of an infinite family of LO shadow DDs, each being of degree N ≥ 9 odd

FN(β,α,µ2
0)=βN−8

[
α8− 28

9
α6

(
N2−3N+20

(N+1)N
+β2

)
+ 10

3
α4

(
N2−7N+40

(N+1)N
+ 2(N2−3N+44)

3(N+1)N
β2+β4

)

− 4
3
α2

(
N2−11N+60

(N+1)N
−N−8

N
β2−N2−3N−28

(N+1)N
β4+β6

)
+ 1

9
(1−β2)2

(
N2−15N+80

(N+1)N
− 2(N−8)

N
β2+β4

)]
(15)
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Shadow GPDs at next-to-leading order

• Next-to-leading order → original result The NLO CFF is composed of a collinear part
(compensating LO evolution applied to the tree-level LO CFF) and a genuine 1-loop NLO
part. An explicit calculation of each term for our polynomial double distribution gives that

Im T q
coll(Q

2, µ2)⊗ Hq(µ2) ∝

αs(µ2) log

(
µ2

Q2

)[
log

(
2− 2ξ

ξ

)
Im T q

LO ⊗ Hq(µ2) +
N+1∑
w=1

k
(coll)
w

(1 + ξ)w

]
(16)

and assuming Im T q
LO ⊗ Hq(µ2) = 0,

Im T q
1 (Q2, µ2)⊗ Hq(µ2) ∝ αs(µ2)

[
log

(
1− ξ

2ξ

)
Im T q

coll ⊗ Hq(µ2) +
N−1∑
w=1

k
(1)
w

(1 + ξ)w

]
(17)

filler
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Shadow GPDs at next-to-leading order

• Cancelling both terms gives rise to two additional systems with a linear number of
equations. The first NLO shadow GPD is found for N = 21, and adding the condition that
the DD vanishes at the edges of its support gives a first solution for N = 25 (see below).

Color plot of an NLO shadow GPD at initial scale 1 GeV2, and its evolution
for ξ = 0.7 up to 100 GeV2 via APFEL++ and PARTONS [Bertone].
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Shadow GPDs at next-to-leading order

• On a lever-arm in Q2 of [1, 10] GeV2 (current and soon up-coming experimental data),
the NLO CFF generated by the NLO shadow GPD varies as O(α2

s (Q2)) and its numerical
value is of order 10−5 (although the NLO shadow GPD is itself of order 1).
• Consider this Goloskov-Kroll GPD model (via PARTONS) at scale 4 GeV2

ξ = 0.1 (left) and ξ = 0.5 (right). The dotted line depicts x = ξ.
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Shadow GPDs at next-to-leading order

• Now consider this GPD model

ξ = 0.1 (left) and ξ = 0.5 (right). The dotted line depicts x = ξ.
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Shadow GPDs at next-to-leading order

• The orange model is GK + 3 × our NLO shadow GPD. For ξ close to 0 and x close to ξ,
by design, the two are very close, but vastly different otherwise. They give rise to NLO
CFFs which are exactly identical at this scale, and different by a negligible amount for
current Q2 lever arm.

ξ = 0.1 (left) and ξ = 0.5 (right). The dotted line depicts x = ξ.
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Conclusion

• We have explicitly shown that, with current lever arm in Q2, there exist LO and NLO
shadow GPDs of considerable size which present a very small and subleading contribution
to CFFs. The deconvolution of DVCS seems therefore ill-posed.

• It is foreseeable that higher order DVCS, TCS or LO DVMP could present similar issues.

• On the contrary, higher order DVMP, DDVCS or Lattice QCD for instance could escape
this problem or significantly constrain it → interest of multi-channel analysis, and the
development of integrated analysis tools, like PARTONS.

• The increase in Q2 lever arm promised by the EIC / EICC will be very welcomed here and
for mechanical properties as well.

• Positivity constraints are also a significant tool to constrain the potential size of shadow
GPDs.
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Backup slides
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Deeply virtual Compton scattering and the structure of hadrons

Physical interest of GPDs

Impact parameter distribution (IPD) [Burkardt, 2000]

Ia(x ,b⊥, µ
2) =

∫
d2∆⊥
(2π)2

e−ib⊥·∆⊥F a(x , 0, t = −∆2
⊥, µ

2) (18)

is the density of partons with plus-momentum x and transverse position b⊥ from the center of
plus momentum in a hadron → hadron tomography

Density of up quarks in an unpolarized proton from a parametric fit to DVCS
data in the PARTONS framework [Moutarde, Sznajder, Wagner, 2018]
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Deconvoluting a Compton form factor

Remark on renormalisation dependence
• H(Q2) =

∑
aHa(Q2, µ2) is not r.-dependent, but the separation in quark and gluon

contributions is.
∑

a T
a(Q2, µ2)⊗ Ha(µ2) has a residual r.-dependence unless T a is

summed at all orders in perturbation. T a(Q2, µ2)⊗ Ha(µ2) has both an intrinsic and a
residual r.-dependence.
• If the GPD evolution has been computed in a consistent way with coefficient functions,

the residual scale dependence of T q
NnLO(Q2, µ2)⊗Hq(µ2) will be small, in the sense that,

for all Q2 and µ2 close to Q2

T q
NnLO(Q2, µ2)⊗ Hq(µ2)− T q

NnLO(Q2,Q2)⊗ Hq(Q2) = O(αn+1
s (Q2)) (19)

• If two very different GPDs have, for all Q2 in the experimental domain and µ2 close to
Q2, the same NnLO CFF T q

NnLO(Q2, µ2)⊗ Hq(µ2) up to O(αn+1
s (Q2)), they will be very

difficult to distinguish from one another, both for numerical reasons
(αn+1

s (Q2) gets very small) and theoretical reasons (the difference
between the two is of the order of the systematic uncertainty created
by varying the renormalisation scale).
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Deconvoluting a Compton form factor

• This means

T q
NnLO(Q2, µ2)⊗ Hq

1 (µ2)− T q
NnLO(Q2, µ2)⊗ Hq

2 (Q2) = O(αn+1
s (Q2)) (20)

that is, by linearity

NnLO shadow GPDs

{
for all experimental Q2 and µ2 close to Q2, T q

NnLO(Q2, µ2)⊗ Hq(µ2) = O(αn+1
s (Q2))

Hq(x , ξ = 0, t = 0, µ2) = 0
(21)

where Hq = Hq
1 − Hq

2 . We call GPDs which satisfy eq. (21) NnLO shadow GPDs.
We have added the constraint that the forward limit is exactly the same
since PDFs are very well known from precise DIS data.
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