The deconvolution problem of deeply virtual Compton scattering

Hervé Dutrieux

herve.dutrieux@cea.fr - PhD student - supervisor: H. Moutarde CEA Saclay - Irfu / Département de Physique Nucléaire

Assemblée générale du GDR QCD, March 10th, 2021

1/20

- 1. Deeply virtual Compton scattering and the structure of hadrons
- 2. Properties of generalised parton distributions
- 3. Deconvoluting a Compton form factor
- 4. Shadow GPDs at leading order
- 5. Shadow GPDs at next-to-leading order
- 6. Conclusion

Deeply virtual Compton scattering and the structure of hadrons

Deeply virtual Compton scattering (DVCS) is the scattering of a lepton on a hadron via a photon of large virtuality, producing a real photon in the final state.

- x is the average light-front plus-momentum (longitudinal momentum in a fast moving hadron) fraction of the struck parton
- ξ describes the light-front plus-momentum transfer, linked to Björken's variable x_B
- $t = \Delta^2$ is the total four-momentum transfer squared

Tree-level depiction of DVCS for $x > |\xi|$ (left) and $\xi > |x|$ (right)

Deeply virtual Compton scattering and the structure of hadrons

Similarly to the introduction of parton distribution functions (PDFs) in the study of DIS,

- For a large photon virtuality $Q^2 = -q^2$, finite x_B and small total four-momentum transfer squared t, factorisation theorems describe DVCS in terms of a hard scattering part computable thanks to perturbative QCD, and a soft non-perturbative part described by generalised parton distributions (GPDs).
- The amplitude of DVCS is parametrised by Compton form factors (CFFs) *F*, which write as convolutions of perturbative coefficient functions *T^a_F* and the GPDs *F^a*:

CFF convolution (leading twist)

$$\mathcal{F}(\xi, t, Q^2) = \sum_{\text{parton type } a} \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} T_F^a\left(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right) F^a(x, \xi, t, \mu^2)^a \tag{1}$$

 ${}^{a}F^{g}(x,\xi,t,\mu^{2})/x$ for the usual definition of gluon GPD

 μ is the factorisation / renormalisation scale, $\alpha_{\rm \textit{s}}$ the strong coupling.

GPDs allow access to gravitational form factors of the **energy-momentum tensor** (EMT) \rightarrow first data-driven extractions of **mechanical properties** of hadronic matter (*e.g.* pressure distribution) [Burkert, *et al.*, 2018], [Kumericki, 2019], [Dutrieux, *et al.*, 2021]

In green, 68% confidence interval found for $\sum_{q} d_1^q (t = 0, \mu^2)$, a critical parameter to evaluate pressure profiles and results obtained by other studies (black markers). The parameter is compatible with 0 with current experimental data. [Dutrieux, *et al.*, 2021]

Properties of generalised parton distributions

- Several types of GPDs: H, E, \widetilde{H} , \widetilde{E} , ... depending on helicity considerations.
- A GPD is a function of (x, ξ, t, μ²), ξ-even, with physical region (x, ξ) ∈ [-1, 1]² and the dependence on μ² is given by renormalisation group equations.
- The forward limit gives back the PDF:

$$H^{q}(x,\xi=0,t=0,\mu^{2}) = f_{q}(x,\mu^{2})$$
(2)

Polynomiality property: due to Lorentz covariance,

$$\int_{-1}^{1} \mathrm{d}x \, x^{n} H^{q}(x,\xi,t,\mu^{2}) = \sum_{k=0 \text{ even}}^{n+1} H^{q}_{n,k}(t,\mu^{2})\xi^{k} \tag{3}$$

This property implies that the GPD is the Radon transform of a **double distribution** F (DD) with an added *D*-term on the support $\Omega = \{(\beta, \alpha) \mid |\beta| + |\alpha| < 1\}$:

Double distribution formalism

$$H^{q}(x,\xi,t,\mu^{2}) = \int_{\Omega} d\beta d\alpha \,\delta(x-\beta-\alpha\xi) \left[F(\beta,\alpha,t,\mu^{2}) + \xi\delta(\beta)D(\alpha,t,\mu^{2})\right] \tag{4}$$

Position of the problem

Assuming a CFF has been extracted from experimental data with excellent precision¹, we are left with the convolution:

$$\int_{-1}^{1} \frac{\mathrm{d}x}{\xi} T^{q}\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu^{2})\right) H^{q}(x, \xi, t, \mu^{2}) = T^{q}(Q^{2}, \mu^{2}) \otimes H^{q}(\mu^{2})$$
(5)

where T^q is a coefficient function computed in pQCD. Can we then "de-convolute" eq. (5) to recover $H^q(x, \xi, t, \mu^2)$ from $T^q(Q^2, \mu^2) \otimes H^q(\mu^2)$?

¹and the different gluon and flavour contributions have been separated, which probably requires a global analysis with various targets and processes.

Deconvoluting a Compton form factor

- Question was raised 20 years ago. Evolution was proposed as a crucial element in [Freund, 1999], but the question remains essentially open.
- We show that GPDs exist which bring contributions to the LO and NLO CFF of only subleading order even under evolution. We call them **LO and NLO shadow GPDs**.

Definition of a LO shadow GPD

For a given scale μ_0^2 ,

$$\forall \xi, \forall t, T^q_{LO}(Q^2, \mu_0^2) \otimes H^q(\mu_0^2) = 0 \quad \text{and} \quad H^q(x, \xi = 0, t = 0, \mu_0^2) = 0$$
 (6)

so for Q^2 and μ^2 close enough to μ_0^2 , $T^q_{LO}(Q^2, \mu^2) \otimes H^q(\mu^2) = \mathcal{O}(\alpha_s(\mu^2))$ (7)

• Let H^q be a LO shadow GPD, and G^q be any GPD. Then G^q and $G^q + H^q$ have the same forward limit, and the same LO CFF up to a numerically small and theoretically subleading contribution.

- We search for our shadow GPDs as simple **double distributions (DD)** $F(\beta, \alpha, \mu^2)$ to respect polynomiality, with a zero D-term. Then, thanks to dispersion relations, we can restrict ourselves to the imaginary part only Im $T^q(Q^2, \mu_0^2) \otimes H^q(\mu_0^2) = 0$.
- We also omit t since it is untouched by the convolution.
- Leading order It is well-known that the LO CFF only probes the GPD on the x = ξ line and the D-term, so a LO shadow GPD is simply given by:

$$\operatorname{Im} T^{q}_{LO}(Q^{2},\mu_{0}^{2}) \otimes H^{q}(\mu_{0}^{2}) \propto H^{q(+)}(\xi,\xi,\mu_{0}^{2}) = 0$$
(8)

$$H^{q}(x,\xi=0,\mu_{0}^{2})=0$$
(9)

where $H^{q(+)}$ denotes the singlet GPD (x-odd part of the GPD).

Shadow GPDs at leading order

We search our DD as a polynomial of order N in (β, α), characterised by ~ N² coefficients c_{mn}:

$$F(\beta, \alpha, \mu_0^2) = \sum_{m+n \le N} c_{mn} \, \alpha^m \beta^n \tag{10}$$

 The associated GPD is obtained by the linear Radon transform, given by the matrix R for x > |ξ|:

$$H^{q(+)}(x,\xi,\mu_0^2) = \sum_{u=1}^{N+1} \frac{1}{(1+\xi)^u} + \frac{1}{(1-\xi)^u} \sum_{\nu=0}^{N+1} q_{u\nu} x^{\nu} \text{ where } q_{u\nu} = \sum_{m,n} R_{u\nu}^{mn} c_{mn} \quad (11)$$

$$R_{uv}^{mn} = \sum_{j=0}^{n} \frac{(-1)^{u+v+j}}{m+j+1} \binom{n}{j} \binom{j}{m-u+j+1} \binom{m+j+1}{v-n+j} \tag{12}$$

Shadow GPDs at leading order

• For our shadow GPD, we first want $H^{q(+)}(\xi,\xi,\mu_0^2) = 0$, so we notice that

$$H^{q(+)}(\xi,\xi,\mu_0^2) = \sum_{w=1}^{N+1} \frac{k_w}{(1+\xi)^w} \quad \text{where} \quad k_w = \sum_{u,v} C_w^{uv} q_{uv} \,, \quad C_w^{uv} = (-1)^{u+v+w} \begin{pmatrix} v \\ u-w \end{pmatrix}$$

Cancelling the LO CFF

$$H^{q(+)}(\xi,\xi,\mu_0^2) = 0 \implies (c_{mn})_{m,n} \in \ker(C.R)$$
(13)

Cancelling the LO CFF

$$H^{q(+)}(\xi,\xi,\mu_0^2) = 0 \implies (c_{mn})_{m,n} \in \ker(C.R)$$
(13)

• We then want $H^{q(+)}(x,\xi=0,\mu_0^2)=0$, so we notice that

$$H^{q(+)}(x,0,\mu_0^2) = \sum_{w=0}^{N+1} q_w x^w \text{ where } q_w = \sum_{u,v} Q_w^{uv} q_{uv}, \quad Q_w^{uv} = 2\delta_w^v$$

Cancelling the forward limit

$$H^{q(+)}(x,\xi=0,\mu_0^2)=0\implies (c_{mn})_{m,n}\in \ker(Q.R)$$

Isfu

12 / 20

(14)

Cancelling the LO CFF

$$H^{q(+)}(\xi,\xi,\mu_0^2) = 0 \implies (c_{mn})_{m,n} \in \ker(C.R)$$
(13)

Cancelling the forward limit

$$H^{q(+)}(x,\xi=0,\mu_0^2)=0 \implies (c_{mn})_{m,n} \in \ker(Q.R)$$
(14)

 Both linear systems C.R and Q.R are systems of ~ N equations for ~ N² variables, so the number of solutions grows quadratically with N, order of the polynomial DD.

Shadow GPDs at leading order

Cancelling the LO CFF

$$H^{q(+)}(\xi,\xi,\mu_0^2) = 0 \implies (c_{mn})_{m,n} \in \ker(C.R)$$
(13)

Cancelling the forward limit

$$H^{q(+)}(x,\xi=0,\mu_0^2)=0 \implies (c_{mn})_{m,n} \in \ker(Q.R)$$
 (14)

LO shadow GPDs

Here is an example of an infinite family of LO shadow DDs, each being of degree $N \ge 9$ odd

$$F_{N}(\beta,\alpha,\mu_{0}^{2}) = \beta^{N-8} \left[\alpha^{8} - \frac{28}{9} \alpha^{6} \left(\frac{N^{2} - 3N + 20}{(N+1)N} + \beta^{2} \right) + \frac{10}{3} \alpha^{4} \left(\frac{N^{2} - 7N + 40}{(N+1)N} + \frac{2(N^{2} - 3N + 44)}{3(N+1)N} \beta^{2} + \beta^{4} \right) \right]$$

$$-\frac{4}{3}\alpha^{2}\left(\frac{N^{2}-11N+60}{(N+1)N}-\frac{N-8}{N}\beta^{2}-\frac{N^{2}-3N-28}{(N+1)N}\beta^{4}+\beta^{6}\right)+\frac{1}{9}(1-\beta^{2})^{2}\left(\frac{N^{2}-15N+80}{(N+1)N}-\frac{2(N-8)}{N}\beta^{2}+\beta^{4}\right)\right]$$
(15)

 Next-to-leading order → original result The NLO CFF is composed of a collinear part (compensating LO evolution applied to the tree-level LO CFF) and a genuine 1-loop NLO part. An explicit calculation of each term for our polynomial double distribution gives that

Im
$$\mathcal{T}_{coll}^{q}(Q^{2},\mu^{2}) \otimes H^{q}(\mu^{2}) \propto$$

 $\alpha_{s}(\mu^{2}) \log\left(\frac{\mu^{2}}{Q^{2}}\right) \left[\log\left(\frac{2-2\xi}{\xi}\right) \operatorname{Im} \mathcal{T}_{LO}^{q} \otimes H^{q}(\mu^{2}) + \sum_{w=1}^{N+1} \frac{k_{w}^{(coll)}}{(1+\xi)^{w}}\right]$ (16)

and assuming Im $T^q_{LO}\otimes H^q(\mu^2)=0$,

$$\operatorname{Im} \ T_1^q(Q^2,\mu^2) \otimes H^q(\mu^2) \propto \alpha_s(\mu^2) \left[\log\left(\frac{1-\xi}{2\xi}\right) \operatorname{Im} \ T_{coll}^q \otimes H^q(\mu^2) + \sum_{w=1}^{N-1} \frac{k_w^{(1)}}{(1+\xi)^w} \right]$$

• Cancelling both terms gives rise to two additional systems with a linear number of equations. The first NLO shadow GPD is found for N = 21, and adding the condition that the DD vanishes at the edges of its support gives a first solution for N = 25 (see below).

Color plot of an NLO shadow GPD at initial scale 1 GeV², and its evolution for $\xi = 0.7$ up to 100 GeV² via APFEL++ and PARTONS [Bertone].

- On a lever-arm in Q^2 of [1, 10] GeV² (current and soon up-coming experimental data), the NLO CFF generated by the NLO shadow GPD varies as $\mathcal{O}(\alpha_s^2(Q^2))$ and its numerical value is of order 10⁻⁵ (although the NLO shadow GPD is itself of order 1).
- Consider this Goloskov-Kroll GPD model (via PARTONS) at scale 4 GeV²

 $\xi = 0.1$ (left) and $\xi = 0.5$ (right). The dotted line depicts $x = \xi$.

The orange model is GK + 3 × our NLO shadow GPD. For ξ close to 0 and x close to ξ, by design, the two are very close, but vastly different otherwise. They give rise to NLO CFFs which are exactly identical at this scale, and different by a negligible amount for current Q² lever arm.

- We have explicitly shown that, with current lever arm in Q^2 , there exist LO and NLO shadow GPDs of considerable size which present a very small and subleading contribution to CFFs. The deconvolution of DVCS seems therefore ill-posed.
- It is foreseeable that higher order DVCS, TCS or LO DVMP could present similar issues.
- On the contrary, higher order DVMP, DDVCS or Lattice QCD for instance could escape this problem or significantly constrain it → interest of multi-channel analysis, and the development of integrated analysis tools, like PARTONS.
- The increase in Q^2 lever arm promised by the EIC / EICC will be very welcomed here and for mechanical properties as well.
- **Positivity constraints** are also a significant tool to constrain the potential size of shadow GPDs.

Backup slides

21 / 20

Deeply virtual Compton scattering and the structure of hadrons

Physical interest of GPDs

Impact parameter distribution (IPD) [Burkardt, 2000]

$$I_{a}(x,\mathbf{b}_{\perp},\mu^{2}) = \int \frac{\mathrm{d}^{2}\Delta_{\perp}}{(2\pi)^{2}} e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} F^{a}(x,0,t=-\Delta_{\perp}^{2},\mu^{2})$$
(18)

is the density of partons with plus-momentum x and transverse position \mathbf{b}_{\perp} from the center of plus momentum in a hadron \rightarrow hadron tomography

Density of up quarks in an unpolarized proton from a parametric fit to DVCS data in the PARTONS framework [Moutarde, Sznajder, Wagner, 2018]

Deconvoluting a Compton form factor

Remark on renormalisation dependence

- *H*(Q²) = ∑_a *H*^a(Q², μ²) is not r.-dependent, but the separation in quark and gluon contributions is. ∑_a *T*^a(Q², μ²) ⊗ *H*^a(μ²) has a residual r.-dependence unless *T*^a is summed at all orders in perturbation. *T*^a(Q², μ²) ⊗ *H*^a(μ²) has both an intrinsic and a residual r.-dependence.
- If the GPD evolution has been computed in a consistent way with coefficient functions, the residual scale dependence of $T^q_{N^nLO}(Q^2, \mu^2) \otimes H^q(\mu^2)$ will be small, in the sense that, for all Q^2 and μ^2 close to Q^2

$$T^{q}_{N^{n}LO}(Q^{2},\mu^{2}) \otimes H^{q}(\mu^{2}) - T^{q}_{N^{n}LO}(Q^{2},Q^{2}) \otimes H^{q}(Q^{2}) = \mathcal{O}(\alpha^{n+1}_{s}(Q^{2}))$$
(19)

• If two very different GPDs have, for all Q^2 in the experimental domain and μ^2 close to Q^2 , the same NⁿLO CFF $T^q_{N^nLO}(Q^2, \mu^2) \otimes H^q(\mu^2)$ up to $\mathcal{O}(\alpha_s^{n+1}(Q^2))$, they will be very difficult to distinguish from one another, both for numerical reasons $(\alpha_s^{n+1}(Q^2) \text{ gets very small})$ and theoretical reasons (the difference between the two is of the order of the systematic uncertainty created by varying the renormalisation scale).

Deconvoluting a Compton form factor

• This means

$$T^{q}_{N^{n}LO}(Q^{2},\mu^{2}) \otimes H^{q}_{1}(\mu^{2}) - T^{q}_{N^{n}LO}(Q^{2},\mu^{2}) \otimes H^{q}_{2}(Q^{2}) = \mathcal{O}(\alpha^{n+1}_{s}(Q^{2}))$$
(20)

that is, by linearity

NⁿLO shadow GPDs

$$\begin{cases} \text{for all experimental } Q^2 \text{ and } \mu^2 \text{ close to } Q^2, \quad T^q_{N^n LO}(Q^2, \mu^2) \otimes H^q(\mu^2) = \mathcal{O}(\alpha_s^{n+1}(Q^2)) \\ (H^q(x, \xi = 0, t = 0, \mu^2) = 0 \end{cases}$$

$$(21)$$

where $H^q = H_1^q - H_2^q$. We call GPDs which satisfy eq. (21) NⁿLO shadow GPDs. We have added the constraint that the forward limit is exactly the same since PDFs are very well known from precise DIS data.

24 / 20