

Measurement of $cos(\phi)$ and $cos(2\phi)$ asymmetries with CLAS12 experiment

Mylene Caudron

IJCLab

March 10, 2021

Introduction

Figure: The inside of a proton

- Proton made of 3 valence quarks
- Each quark has a spin and a momentum
- Study of spin-orbit correlation
 - \rightarrow Intrinsic motion of quarks inside the proton

- Transverse Momentum Dependance (TMD) distribution functions describe the azimuthal distribution of partons inside nucleons.
- Boer-Mulders function : generates cos(2φ) asymmetry in unpolarized leptoproduction, coupled to Collins fragmentation function

 → describe the correlation between the transverse spin and momentum of a quark ejected from an unpolarized target in Semi-Inclusive Deep Inelastic Scattering (SIDIS).
- Goal of this thesis : Measurement of the Boer-Mulders function with CLAS12 experiment
- Extract the $cos(\phi) cos(2\phi)$ asymmetries in unpolarized leptoproduction

Electron scattered from a proton

At high enough Q^2 : scatter from a quark

 SIDIS : a hadron is detected with the scattered electron

ightarrow Here the hadron is a π^+

Semi Inclusive Deep Inelastic Scattering

 ϕ : azimuthal angle between lepton scattering plane and hadron production plane

This angle is correlated with transverse momentum of quarks \rightarrow TMDs

 $l(l) + p(P) \rightarrow l'(l') + h(Ph) + X(PX)$

Jefferson Lab and CLAS12

Jefferson Laboratory in Newport News (VA) Continuous Electron Beam Accelerator Facility (CEBAF)

CLAS12 detector (CEBAF Large Acceptance Spectrometer 12 GeV)

- \rightarrow Electron beam 10.6 GeV
 - Cherenkov counters
 - EM Calorimeter
 - Time of Flight counters
 - Tracking

Kinematic Variables

 x_B : fraction of the proton momentum carried by the struck quark Q^2 : 4 momentum transfer

$$x_B = \frac{Q^2}{2.p.q}$$
 $Q^2 = (l' - l)^2$ $Q^2 > 1.5 \, Gev^2$

Hadronique variables

z : fractional energy transfered to hadron P_T : transverse momentum of hadron

$$z = rac{E_{\pi}}{\nu}$$
 $0.3 < z < 0.8$ $P_t = rac{|\vec{p}_h \times \vec{q}|}{|\vec{q}|}$ $P_T < 1.2 GeV$

Objectives of the analysis

• Extract $cos(\phi)$ and $cos(2\phi)$ with the asymmetry defined in experiments

 $< \cos(\phi) >= rac{\sum \cos(\phi)}{N}$

• Apply corrections (acceptance, radiative...)

ightarrow 6 sectors

 \rightarrow Triangular shape

 \rightarrow Big acceptance and radiative effects

• SIDIS simulations in CLAS12

 \rightarrow Simulate the particles through CLAS12 with Pythia event generator and GEMC CLAS simulation

- Fit the pion spectrum with the form $A + Bcos(\phi) + Ccos(2\phi)$
- Extract the $cos(\phi)$ and $cos(2\phi)$ asymmetries and conclude on the Boer-Mulders function

Results

Preliminary results

 $cos(\phi)$ and $cos(2\phi)$ asymmetries in function of the different kinematic variables

Results

Figure: Data analysis

Simulation without ϕ modulations show large asymmetries du to the detector geometry

Thank You