

Study of 2nd order susceptibilities with EPOS event generator

Johannès JAHAN - Subatech / Université de Nantes (FR)

Assemblée Générale du GDR QCD (8th - 10th March)

In collaboration with: Klaus WERNER - Université de Nantes / Subatech Maria STEFANIAK - Warsaw University of Technology / Subatech Tanguy PIEROG - Karlsruhe Institute of Technology

Physical context	EPOS	Results	
Table of Contents			

Physical context

- What are we looking for ?
- How can we find it ?
- What has been done recently ?

EPOS

- What is EPOS ?
- Generation of an event
- Goal of the study

- First results : testing EPOS
- More details

Physical context	EPOS	Results	
00000	00000	0000	
What are we looking for ?			
QCD phase diagram	n and CEP		

Since the QGP has been observed (indirectly), efforts has been made to learn about its properties, and to map the QCD phase diagram.

- **Theoretically :** use models & theories to make predictions (T_c , μ_{B_c}) or to extract information from measurements (T, μ_B , $\eta/s...$)
- Experimentally : exploration of QCD phase diagram thanks to the Beam Energy Scan (BES) program, measurements of observables of interest

D. Cebra, 2013

<u>Question(s) of interest</u> : is there a 1st order phase transition and a critical endpoint between QGP and hadronic gas phases ? If yes, where ?

Physical context	EPOS	Results	
0000	00000	0000	
How can we find it ?			
Susceptibilities			

To answer this question, there are many tools that can be used, among which are the susceptibilities.

In a grand-canonical ensemble, to what a heavy-ion collision can be compared to, they are defined as derivatives of the partition function *Z* :

$$\left|\chi_{i,j}^{X,Y} = \frac{1}{VT^3} \cdot \left[\frac{\partial^{i+j}Z(T,V,\mu)}{(\partial\hat{\mu}_X)^i(\partial\hat{\mu}_Y)^j}\right]_{\mu_{X,Y}=0}\right| \qquad (\hat{\mu} = \frac{\mu}{T})$$

As we are searching for radical changes in the state of nuclear matter, i.e. phase transition, these derivatives of *Z* should reveal them.

R. Bellwied et al., 2019

Physical context	EPOS	Results	
00000	00000	0000	
How can we find it ?			
Susceptibilities			

In a more convenient and understandable way, susceptibilities can be written as a function of the net-charge cumulants $(N_X = n_X - n_{\overline{X}}).$

They represent in fact event-by-event fluctuations of the considered net charges.

2^{nd} order susceptibilities for B, Q, S

Linked to the (co)variances of the considered charges :

$$\chi_{11}^{XY} = \frac{1}{VT^3} \sigma_{XY}^{11} = \frac{\langle N_X N_Y \rangle - \langle N_X \rangle \langle N_Y \rangle}{VT^3}$$
$$\chi_2^X = \frac{1}{VT^3} \sigma_X^2 = \frac{\langle N_X^2 \rangle - \langle N_X \rangle^2}{VT^3}$$

Also, in order to have observables independent from volume or temperature, which cannot be measured directly in experiments, ratios are often used.

Ratios
$$C_{BS} = \frac{\sigma_{BS}^{11}}{\sigma_{S}^{2}}$$
 $C_{QB} = \frac{\sigma_{QB}^{11}}{\sigma_{B}^{2}}$ $C_{QS} = \frac{\sigma_{QS}^{11}}{\sigma_{S}^{2}}$

Physical context	EPOS	Results	
00000	00000	0000	
What has been done recently ?			
Experimental results			

STAR collaboration measured (for particles with $|\eta| < 0.5 + 0.4 < p_T < 1.6 \text{ GeV/c}$) :

- (co)variances $\sigma_{p,Q,k}^{11,2}$ (proxies for $\chi_{11,2}^{B,Q,S}$)
 - as a function of the η -window
 - as a function of $\langle N_{part} \rangle$

Physical context	EPOS	Results	
00000	00000	0000	
What has been done recently ?			
Experimental results			

STAR collaboration measured (for particles with $|\eta| < 0.5 + 0.4 < p_T < 1.6 \text{ GeV/c}$) :

- (co)variances $\sigma_{p,Q,k}^{11,2}$ (proxies for $\chi_{11,2}^{B,Q,S}$)
 - as a function of the η -window
 - as a function of $\langle N_{part} \rangle$
- Koch ratios C_{Qp,Qk,pk} (proxies for C_{QB,QS,BS})
 - as a function of $\langle N_{part} \rangle$
 - as a function of $\sqrt{s_{NN}}$

Physical context	EPOS	Results	
00000	00000	0000	
What has been done recently ?			
Lattice QCD + HRG mod	el		

R. Bellwied et al. :

- breakdown of hadronic species contributions to susceptibilities, using Hadron Resonance Gas model
 - \Rightarrow best proxies for ratios

(so potentially the most sensitive ones)

$$C_{OS} = \frac{\chi_{11}^{OS}}{\chi_2^S} = \frac{1}{2} \cdot \frac{\sigma_K^2}{\sigma_K^2 + \sigma_\Lambda^2}$$
$$C_{BS} = \frac{\chi_{11}^{BS}}{\chi_2^S} = \frac{\sigma_\Lambda^2}{\sigma_K^2 + \sigma_\Lambda^2}$$

Physical context	EPOS	Results	
00000	00000	0000	
What has been done recently ?			
Lattice QCD + HRG r	nodel		

R. Bellwied et al. :

- breakdown of hadronic species contributions to susceptibilities, using Hadron Resonance Gas model
 - \Rightarrow best proxies for ratios

(so potentially the most sensitive ones)

 \Rightarrow results depending on \sqrt{s} + kinematic cuts compared with STAR data

$$\begin{split} C_{OS} &= \frac{\chi_{11}^{QS}}{\chi_2^S} = \frac{1}{2} \cdot \frac{\sigma_K^2}{\sigma_K^2 + \sigma_\Lambda^2} \\ C_{BS} &= \frac{\chi_{11}^{BS}}{\chi_2^S} = \frac{\sigma_\Lambda^2}{\sigma_K^2 + \sigma_\Lambda^2} \end{split}$$

... and what about event generators ?

	EPOS	Results	
00000	00000	0000	
Contents			

2 EPOS

- What is EPOS ?
- Generation of an event
- Goal of the study

3 Results

4 Conclusion

Physical context	EPOS	Results	
00000	0000	0000	
What is EPOS ?			
EPOS			

Event generators are programs made to compute models and simulate every steps of a collision (e.g. EPOS, PYTHIA, HIJING++...).

Advantage : perfect detector, as final-state particles are all listed (no uncertainties)

Energy conserving quantum mechanical approach, based on Partons, parton ladders, strings, Off-shell remnants, and Saturation of parton ladders

Event generator based on Parton-Based Gribov-Regge Theory, which unifies Parton model and Gribov-Regge theory by solving inconsistencies of both models.

Can simulate any type of collision :

$$e^{+/-} + e^{+/-}$$
 $e^{+/-} + p$ $p + p$ $p + A$ $A + A$

Physical context	EPOS	Results	
00000	00000	0000	
Generation of an event			
Initial conditions			

Primary interactions treated with PBGRT exchange of multiple Pomerons in parallel

 \rightarrow can be seen as cut (particle production) or uncut (σ calculation) parton ladders

K. Werner, 2018

K. Werner et al., 2000

Core-corona separation

- Core = high string density region
- Corona = escaping segments (with high p_T)

Physical context	EPOS	Results	
	00000		
Generation of an event			

Medium evolution, hadronisation and re-scattering

Core evolution

Viscous 3D+1 hydrodynamics expansion based on a cross-over transition EoS + Hadronisation of the medium via Cooper-Frye procedure

Corona evolution

Strings evolution following dynamics of gauge invariant Lagrangian

String fragmentation to produce hadrons

Re-scatterings between formed hadrons with UrQMD model until chemical freeze-out (no more inelastic scatterings) kinetic freeze-out (no more elastic scatterings)

Final state particle

What we can (not) study with EPOS				
Goal of the study				
00000	00000	0000		
	EPOS	Results		

The hydrodynamic evolution of the core in EPOS does not include fluctuations : susceptibilities are NOT sensitive to any possible CEP

 \Rightarrow search for signatures of CEP impossible with EPOS by construction !

In fact, in EPOS, all the fluctuations are coming from initial conditions, hadronisation process and/or hadronic cascades.

Hence, what we plan to do is to

study the impact of hadronisation and hadronic cascades on the susceptibilities

by comparing susceptibilities :

- from micro-canonical & grand-canonical decays
- from before & after UrQMD

Physical context	EPOS 00000	Results	Conclusion OOO
Contents			

Results

- First results : testing EPOS
- More details

Physical context	EPOS	Results	
00000	00000	0000	
First results : testing EPOS			
Koch ratios vs energy			

Results from EPOS 4 with BEST EoS, with $T_c = 155$ MeV and $\mu_{Bc} = 350$ MeV (cf. recent presentation from M. Stefaniak for more details)

 $\begin{array}{l} \underbrace{\text{!!! CAUTION}:\beta \text{ version of EPOS 4 !!!}}_{\rightarrow \text{ just started parametrisation for}} \\ \text{LHC data} \end{array}$

(+ only 2 energies tested yet)

 \Rightarrow EPOS underestimate ratios

Let's check in details...

Physical context	EPOS	Results	
		0000	
More details			

(Co)variances vs Npart

Qualitatively \surd

- EPOS general behaviour \equiv STAR data
- globally same variation trends w energy

Quantitatively X

- few EPOS results match with STAR data
- too much / not enough variation

Physical context	EPOS	Results		
00000	00000	0000		
More details				
Hadronic species multiplicity				

In fact, discrepancies for these 2nd order cumulants are directly linked to the multiplicity of the considered species.

Indeed, if we multiply net particle numbers N_X and N_Y by factors c_X and c_Y , we get :

$$\begin{aligned} \sigma_{XY}^{\prime 11} &= \langle N_X^{\prime} . N_Y^{\prime} \rangle - \langle N_X^{\prime} \rangle \langle N_Y^{\prime} \rangle \\ &= \langle c_X N_X . c_Y N_Y \rangle - \langle c_X N_X \rangle \langle c_Y N_Y \rangle \\ &= c_X c_Y \langle N_X . N_Y \rangle - c_X \langle N_X \rangle c_Y \langle N_Y \rangle \end{aligned}$$

Physical context	EPOS	Results	
		0000	
More details			

Hadronic species multiplicity

In fact, discrepancies for these 2nd order cumulants are directly linked to the multiplicity of the considered species.

Indeed, if we multiply net particle numbers N_X and N_Y by factors c_X and c_Y , we get :

$$\begin{aligned} \sigma_{XY}^{\prime 1} &= \langle N_X^{\prime} . N_Y^{\prime} \rangle - \langle N_X^{\prime} \rangle \langle N_Y^{\prime} \rangle \\ &= \langle c_X N_X . c_Y N_Y \rangle - \langle c_X N_X \rangle \langle c_Y N_Y \rangle \\ &= c_X c_Y \langle N_X . N_Y \rangle - c_X \langle N_X \rangle c_Y \langle N_Y \rangle \end{aligned}$$

$$\sigma_{XY}^{\prime 11} = (c_X.c_Y) \times \sigma_{XY}^{11}$$

and similarly

$$\sigma_X^{\prime 2} = (c_X)^2 \times \sigma_{XY}^{11}$$

Physical context	EPOS	Results	Conclusion
	00000	0000	• O O
Contents			

3 Results

Physical context	EPOS	Results	Conclusion
	00000	0000	OOO
Summary & outlook			

Plan : use last version of EPOS 4 study the impact of hadronisation and hadronic cascades on 2^{nd} order susceptibilities of *B*, *Q*, *S*.

In particular : compare values of STAR proxies and best proxies proposed by R. Bellwied *et al.* before and after hadronic cascades + compare them for different hadronisation processes (grand-canonical / microcanonical)

Status :

1. compare EPOS results with STAR measured proxies :

OK qualitatively, NOT OK quantitatively

BUT "works" technically, even without any RHIC data matching test yet

- \Rightarrow finish EPOS 4 parametrisation + add proxies from R. Bellwied *et al.*
 - \rightarrow investigate particle production (yields, dN/dy vs N_{part}...)
 - \rightarrow check results for other energies to see better the global tendency
- 2. compare results before and after UrQMD
- 3. compare results from different hadronisation processes
- 4. take a look at higher order cumulants and ratios (skewness, kurtosis...) ?

Physical context	EPOS	Results	Conclusion
			000

Thanks for your attention !

Time for questions

Every comments or suggestions are welcome ©

More references about EPOS :

- primary interactions & hydrodynamics in EPOS
- hydrodynamics in EPOS
- heavy flavors in EPOS
- jet-fluid interaction in EPOS

Recent developments for EPOS 4 :

- parton saturation (see also here)
- factorisation
- BEST equation of state inclusion

Stay tuned ! More papers to come...

Hadron Resonance Gas Model (summarised from R. Bellwied et al.)

It assumes that a gas of interacting hadrons in ground states can be described by a gas of non-interacting hadrons and resonances.

One can then re-write partition function, allowing to consider kinematic cuts simply by changing the phase space integration :

$$\ln(\mathscr{Z}_R) = \eta_R \frac{V.d_R}{2\pi^2 T^3} \int_0^\infty p^2.dp.\ln\left(1 - \eta_R.z_R.e^{-\varepsilon_R/T}\right)$$

Hence, with such assumption, one can decompose susceptibilities as a function of hadronic species :

$$\chi_{ijk}^{BQS}(T,\hat{\mu}_{B},\hat{\mu}_{Q},\hat{\mu}_{S}) = \sum_{R} \sum_{i \in stable} (P_{R \to p})^{l} \times B_{p}^{i} Q_{p}^{j} S_{p}^{k} \times I_{l}^{R}(T,\hat{\mu}_{B},\hat{\mu}_{Q},\hat{\mu}_{S})$$

with :

- l = i + j + k
- $P_{R \to p} = \sum_{\alpha} N_{R \to p}^{\alpha} \times n_{p,\alpha}^{R}$: $\langle n_p \rangle$ produced in process α by each resonance R
- B_p^i, Q_p^j, S_p^k : quantum numbers of particle specie p

$$- l_l^R(T, \hat{\mu}_{B,Q,S}) = \frac{\partial^l}{\partial \hat{\mu}_R^l} \left[\frac{1}{VT^3} \sum_R \ln(\mathscr{Z}_R) \right] \qquad (\hat{\mu}_R = \hat{\mu}_B \cdot B_R + \hat{\mu}_Q \cdot Q_R + \hat{\mu}_S \cdot S_R)$$