

Heavy flavor hadrons produced in jets with the ALICE experiment

<u>Yitao WU</u>

2021.03.09

Motivation

• Heavy flavor hadrons

- Heavy quarks (b,c) are mostly produced in hard scatterings at the initial stage of the collision
- measurement down to $p_{\rm D} \approx 0$
- Production cross section can be calculated within pQCD

HF-tagged jets

- Measurement of jets from hard scattering down to very low $p_{\mathrm{T,jet}}$
 - which helps in constraining the **jet background** (even in large systems)
- Experimental input for gluon-to-hadron Fragmentation Function $(g \to D^0)$ and gluon PDF at low ${\rm x}$
- Quark-enhanced jet sample (w.r.t inclusive jets ← gluon-induced showers)
- pp: pQCD test
- **pA**: Cold-Nuclear-Matter effect
- AA: Probe of Quark-Gluon Plasma

ALICE Detector

Analysis Methods

HF-tagged jet reconstruction

- HF hadrons (D, Λ_c , J/ ψ) reconstruction with selected channels
- Replace daughters with hadron candidate
- Jet clustering with all charged tracks
 - Anti- k_T algorithm, R=0.4

Signal extraction by invariant mass

≻Fitting raw spectrum

- Side-band method for background subtraction
- Correction on efficiency and beauty feeddown (prompt and non-prompt)
- ≥2D unfolding $(z, p_{T,jet})$ for detector effect

 $D^{0} \rightarrow K^{-}\pi^{+} + conj$ (B.R. 3.89%) $\Lambda^{+}_{C} \rightarrow pK^{0}_{S} + conj.$ (B.R. 1.59%) $J/\psi \rightarrow e^{+}e^{-}$ (B.R. 5.97%)

D^0 -tagged jet

Université

de Strasbourg

 $z = p_{T,D^0}/p_{T,jet}$

Λ_{C}^{+} -tagged jet

$$z = p_{T,\Lambda_C^+} / p_{T,jet}$$

- First measurement of Λ_C^+ in jets at LHC
- Measurement with large uncertainties.
- Exciting prospects for high luminosity LHC run!

Comparison to model

- POWHEG hvq CT10NLO + PYTHIA6
- Softer fragmentation in data
- Seems to favor PYTHIA with softer settings
- Allow to put constrains on models

b-tagged jets

- Selection
- Most displaced Secondary Vertex (SV)
 - 3 prongs, p-Pb 2016 data at 5.02 TeV
 - Displacement significance: $SL_{xy} = L_{xy}/\sigma_{L_{xy}}$
 - Dispersion of SV: $\sigma_{SV} = \sqrt{\Sigma_i (d_{0,i})^2}$
- Track counting algorithm
 - Using impact parameter of b-hadrons
 - Evaluate a discriminator $sd_{xy} = sign\left(\overrightarrow{d_{xy}} \cdot \overrightarrow{p_{jet}}\right)d_{xy}$
 - Sort the d_{xy} of the tracks inside the jet in descending order
 - A jet is tagged as a b-jet if the Nth most displaced track with IP larger than a threshold parameter
- Correction
 - Data-driven method for efficiency and purity

b-tagged jets

- Cross sections
 - Top: pp 5.02 TeV
 - Bottom: pPb 5.02 TeV
- Model comparison
 - Red: POWHEG HVQ
 - Blue: POWHEG Dijet

b-jet production is not affected by cold-

nuclear-matter effect within the current uncertainties

Summary

- D-tagged jets
 - p_T differential cross-section consistent with theory
 - D-meson jet momentum fraction in pp shows softer fragmentation in data for low $p_{T,jet}$
 - Pb-Pb: analysis ongoing
- Λ_C -tagged jets
 - First measurement at LHC
 - Allow to put constrains on models
- b-jets
 - Good agreement with POWHEG+PYTHIA
 - R_{pPb} indicating no cold nuclear matter effects
- J/ψ -tagged jets
 - Analysis ongoing