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ALICE detector  (Run 3)

TPC: |hlab| < 0.9, Muon Detector: 2.5 < hlab < 4 

Run 3 and 4:  New Inner Silicon Tracker, A Muon Forward Tracker
 Continuous readout(*): 50 kHz in Pb-Pb, 200 kHz up to 1 MHz in pp and p-A
(*)The feasible rate also depends on the detector occupancy in a fixed-target mode
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Be, C, Ti, W, …If approved, target installation during LHC LS3 (2025-2027)

106 p/s on 1 cm 

thick target
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5 PHYSICS PROJECTIONS

of ALICE. Fig. 30 shows the p̄ kinematical reach44 for the ALICE CB for pp collisions for which the
ALICE CB performances are similar as for pHe collisions. As expected, p̄ with momenta as low as a few
hundred MeV (which correspond to a rapidity difference between the He target and the p̄, �yHe p̄, as low as
0.4) can easily be detected. Such p̄ with small �yHe p̄ for 4He +p ! p̄ + X correspond to the high-energy
tail of the 4He +p! p̄ + X process (4He as projectile), which is one of the leading process in the cosmic p̄
spectrum. Similarly, using C, N or O targets, one can study the high-energy p̄ tail for (C,N,O)+p! p̄ + X.
To the best of our knowledge no other experimental set-up can cover this high-energy limit.
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Figure 30: The expected kinematical coverage for p̄ production obtained with PYTHIA8. for AFTER@ALICECB with a displaced
vertex at ztarget = �4.7 m from the nominal ALICE IP. Results are obtained assuming reduced track length in TPC, which gives the
TPC acceptance of 1.35 < ⌘ < 2.50 and the TOF acceptance of 0.27 < ⌘ < 1.58.

With an oxygen beam, the study of the low-energy p̄ in the laboratory frame from 16O +p ! p̄ + X
as well as from 16O + 4He ! p̄ + X processes would become possible; this corresponds to the actual
astrophysical situation. In such a case, AFTER@ALICECB would be able to access the very low energy
domain, whereas the LHCb coverage would be similar as for previous He studies, i.e. from 10 to 100 GeV.
16O is the most abundant nucleus in our universe after H and He, such that such experimental measurements
will likely reduce the uncertainty of the cosmic p̄ spectrum.

5.2. Spin physics
This section focuses on the case for spin physics at AFTER@LHC, which is very competitive in the

worldwide context. It can be divided into two parts. The first relies on the use of a polarised target to
carry out many SSA measurements of common probes with a high precision, but also to measure –for
the first time– SSA on rare perturbative probes which would remain unaccessible otherwise45. As such,
AFTER@LHC opens a novel domain of investigation of the Sivers-like effects for several years, in order

44The purpose of this plot is to show the kinematical range and the statistics available in the fixed-target set-up. We do not expect
to obtain different results by using another Monte-Carlo code such as EPOS for instance.

45Let us recall that in this c.m.s. energy range RHIC offers significantly lower luminosities with a limited access to the high x in
the polarised nucleons.

61

high-E p from interaction of primary cosmic rays (p, 4He, 12C, 14N, 16O) 
with interstellar matter  (p, 4He)


slow p from p beam with fixed target of C, N, O, He

⇳

C. Hadjidakis et al., arXiv:1807.00603
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Figure 26: nCTEQ15 nPDFs before and after the reweighting using RpXe pseudo-data shown in Fig. 25 for (a) D0, (b) J/ , (c) B+,
(d) ⌥(1S ) production at AFTER@LHCb. The plots show ratios RXe

g of gluon densities encoded in nCTEQ15 over that in CT14
PDFs at scale Q = 2 GeV.

theory predictions is shown in Fig. 22, where we assumed the follwoing luminosities: Lpp = 10 fb�1 and
LpXe = 100 pb�1 for the psedo-data.

In Fig. 23 we display the nPDFs before and after the reweighting using the AFTER@LHC RpXe pseudo-
data. We can see a significant decrease of the errors for up and down quark distributions showing the
potential of the AFTER@LHC to constrain nPDFs. In practice, due to the limited amount of data, the
current nPDF errors are considerably underestimated and the actual importance of these data can not be fully
demonstrated in this kind of study. However, Fig. 21 clearly shows how complementary the kinematical
coverage of AFTER@LHC will be compared to the current DY data for the nPDF determination. Similarly
to the proton case, the W± data could be used for a determination of the high-x nPDF in particular the light
quark sea distributions.

Additionally, we have also investigated what would be the impact of such DY measurements on nPDFs
in case less data would be collected. For this purpose we assumed 10 times reduced luminosities for both
pp and pXe samples. The results for such scenario are presented in Fig. 24 which shows that even in this

56

C. Hadjidakis et al., arXiv:1807.00603
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LHC beam direction
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LHC beam direction
channeled halo beam

bending of 150 μrad

4

Fixed-target implementation
● Internal solid target + a bent crystal 

– a bent crystal installed in front of the LHC Interaction Point 2 deviates the beam 
halo onto a solid target

– bending angle of the crystal: 150 ;rad 
– Target position: ~ -4.7 m  

Studies of the crystal layout 
by A. Fomin, F. Galluccio, 
W. Scandale, M. Patecki 

Drawing courtesy of M. Patecki

See talks of A. Fomin and M. 
Patecki at PBC-FT working group 
meeting, 16 Dec 2020 for details

73 m 4.7 m

M. Patecki

16/12/2020 M. Patecki, Plans for the ALICE-FT studies 4

Consolidation of the crystal layout
• Layout parameters:

• LHC configuration:
• p and ion beam 

• Starting with p beams, then ion beams
• Both can be studied, ion case much more complex.

• (Run 3) & Run 4
• Crystal:

• Plane (vertical)
• Longitudinal position (-73m from IP2)
• Bending angle (~150 urad)
• Dist. from the beam (~6 𝜎 )

• Target:
• Dist. from the beam (~ 4 mm)

• Absorber:
• Longitudinal position
• Gap
• Length, material

• Performance analysis:
• Machine losses
• Protons on target

16/12/2020 M. Patecki, Plans for the ALICE-FT studies 4

Consolidation of the crystal layout
• Layout parameters:

• LHC configuration:
• p and ion beam 

• Starting with p beams, then ion beams
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• (Run 3) & Run 4
• Crystal:

• Plane (vertical)
• Longitudinal position (-73m from IP2)
• Bending angle (~150 urad)
• Dist. from the beam (~6 𝜎 )

• Target:
• Dist. from the beam (~ 4 mm)

• Absorber:
• Longitudinal position
• Gap
• Length, material

• Performance analysis:
• Machine losses
• Protons on target

absorber

Realisation of beam interaction with fixed target



RUN3

Beampipe supports: RUN3 Vs RUN4
RUN3

TBD
Possible reduction of 
the support structure

RUN4

Supports must be on the TPC 17Supports must be on FoCal Platform

FoCal

Beampipe Layout: RUN3 Vs RUN4

Dimension in mm

RB24
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72801380

L3

IP=0

14

8710

~7100

290

7000

~300

Gate Valve will have a limited functionality respect to RUN3 

(dismounting of Compensator Magnet, RB24 upstream dismounting)

RUN4

~1080

290RUN4
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valve valve

fixed target

Fixed target and FoCal: original concept

ALICE

6

Study of gluon saturation,  
through direct photon detection



Impact of valves on FoCal: original concept
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Impact of valves on FoCal: new concept
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New design of target in progress
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9Cynthia Hadjidakis     PHE meeting   March 8th 2021

Highlights 2020-2021

Studies for a fixed-target program in ALICE 
• proton and lead beams on fixed target with 

existing detectors, in particular the central 
barrel: for high-x partonic content of the 
nucleon/nuclei, with connection to 
astroparticle and QGP physics 

• LHC beam halo deflected with bent crystal 
on a solid target internal to the beam pipe 

• solid target: from Be to W 
• target system design currently improved

target

beam pipe

compressed 
bellow

rail
valve

transverse pipe

K. Pressard

stepper motor, with 10 or 50 μm resolution



Status summary of fixed-target programme
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•  Bent-crystal collimation studies in progress

•  Target-system design finalisation in progress

•  Simulation studies of impact of target implementation in progress

•  Data acquisition and reconstruction studies in progress

•  Preparations for test target at SPS in progress
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Thank you for your attention


