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Introduction
In general: insight in the low-energy regime of QCD, especially in
the confinement/deconfinement transition.

Most results are coming from non-perturbative, numerical (lattice)
or semi-analytical (FRG and SD) methods.
From this, we know that:

At some very high temperature Tc , hadrons become free quarks and
gluons→ quark-gluon plasma.
This transition is related to the breaking of the center symmetry ZN ,
for Yang-Mills theories.



Introduction
In general: insight in the low-energy regime of QCD, especially in
the confinement/deconfinement transition.
Most results are coming from non-perturbative, numerical (lattice)
or semi-analytical (FRG and SD) methods.

From this, we know that:

At some very high temperature Tc , hadrons become free quarks and
gluons→ quark-gluon plasma.
This transition is related to the breaking of the center symmetry ZN ,
for Yang-Mills theories.



Introduction
In general: insight in the low-energy regime of QCD, especially in
the confinement/deconfinement transition.
Most results are coming from non-perturbative, numerical (lattice)
or semi-analytical (FRG and SD) methods.
From this, we know that:

At some very high temperature Tc , hadrons become free quarks and
gluons→ quark-gluon plasma.
This transition is related to the breaking of the center symmetry ZN ,
for Yang-Mills theories.



Introduction
In general: insight in the low-energy regime of QCD, especially in
the confinement/deconfinement transition.
Most results are coming from non-perturbative, numerical (lattice)
or semi-analytical (FRG and SD) methods.
From this, we know that:

At some very high temperature Tc , hadrons become free quarks and
gluons→ quark-gluon plasma.

This transition is related to the breaking of the center symmetry ZN ,
for Yang-Mills theories.



Introduction
In general: insight in the low-energy regime of QCD, especially in
the confinement/deconfinement transition.
Most results are coming from non-perturbative, numerical (lattice)
or semi-analytical (FRG and SD) methods.
From this, we know that:

At some very high temperature Tc , hadrons become free quarks and
gluons→ quark-gluon plasma.
This transition is related to the breaking of the center symmetry ZN ,
for Yang-Mills theories.



Center symmetry
The order parameter for the confinement/deconfinement transition
is the Polyakov loop:

P ∝ e−FT (1)

In the confined phase, F is infinite→ P = 0. In the deconfined
phase, F is finite→ P 6= 0.
Under center symmetry P → ZNP, so breaking of the center
symmetry signals deconfinement.
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Analytical results
At high energies, QCD is well described by an SU(3) Yang-Mills
action with a Faddeev-Popov gauge fixing:

L =
1
4

(F a
μν)

2 + ∂μca(Dμc)a + iba∂μAa
μ (2)

At high energies, the coupling constant decreases: Asymptotic
feedom.
At low energies, the coupling constant increases, and diverges:
Landau pole.

Does this mean we have an infinite coupling at low energies?
Probably not!
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Gribov problem
Gribov: for high values of the coupling constant, the FP gauge
fixing does not uniquely fix the gauge field, i.e. ∂μAμ = ∂μA′μ = 0.

An analytic model of the IR regime should restrict the number of
Gribov copies:

Gribov-Zwanziger model:

L =
1
4

F a
μνF

a
μν + c̄a∂μDab

μ cb + iba∂μAa
μ−ω̄ae

ν ∂μDab
μ ωbe

ν

+ ϕ̄ae
ν ∂μDab

μ ϕ
be
ν −gγ1/2f abcAa

μ
(
ϕbc
μ + ϕ̄bc

μ
)
− γddG

}
Curci-Ferrari model: L =

1
4

F a
μνF

a
μν + c̄a∂μDab

μ cb + iba∂μAa
μ+m2Aa

μA
a
μ

The GZ and CF model introduce a non-perturbative mass term for
the gluon (in agreement with lattice results)→ Avoid a Landau pole,
perturbation theory in the non-perturbative region.
Can we use the GZ/CF model to describe the
confinement/deconfinement transition?

Not in the Landau gauge:
no explicit center symmetry.
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Background Field gauge Methods
In the BFG formalism, an arbitrary background field Aμ is
introduced: aa

μ = Aa
μ − A

a
μ.

We go from the Landau gauge ∂μAa
μ = 0 to the Landau-deWitt

gauge (Dμa)a
μ = 0, D

ab
μ = ∂μδab − f abcAc

μ.
The center symmetry is now governed by the background field
symmetry.
The Polyakov loop is now its functional expression at the minimum
of a background field potential V .
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Example: SU(2)
P = cos(r/2) with r = βgA

a
0

→ confinement at r = π.

The background field potential V (T , r) can be calculated by loop
expansions→ look for T at which the minimum is at r = π.
For the one-loop GZ model: 1

d2V (r ,T )
dr2 |r=π = 0

1D. Kroff, U. Reinosa, Phys. Rev. D98 (2018) 034029
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Other results
Tc(MeV )

Lattice CF at 1-loop 2 CF at 2-loop 3

SU(2) 295 238 284
SU(3) 270 185 254

we hope to report on the 2-loop GZ results soon!

2U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys.Lett. B742 (2015) 61-68.
3U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys.Rev. D93 (2016) 105002.
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