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m In general: insight in the low-energy regime of QCD, especially in
the confinement/deconfinement transition.

m Most results are coming from non-perturbative, numerical (lattice)
or semi-analytical (FRG and SD) methods.
m From this, we know that:
m At some very high temperature T, hadrons become free quarks and
gluons — quark-gluon plasma.
m This transition is related to the breaking of the center symmetry Zy,
for Yang-Mills theories.
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m In the confined phase, F is infinite — P = 0. In the deconfined
phase, F is finite — P # 0.

m Under center symmetry P — ZyP, so breaking of the center
symmetry signals deconfinement.
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m At high energies, the coupling constant decreases: Asymptotic
feedom.
m At low energies, the coupling constant increases, and diverges:
Landau pole.
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m Does this mean we have an infinite coupling at low energies?
Probably not!
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Gribov problem

m Gribov: for high values of the coupling constant, the FP gauge
fixing does not uniquely fix the gauge field, i.e. 9,A, = 9 A, = 0.
m An analytic model of the IR regime should restrict the number of
Gribov copies:
m Gribov-Zwanziger model:
L= %FjVFjV +€%0,D3°c® + ib20,AT—0i°0, D3 oy®
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m Curci-Ferrari model: £ = %F;Fjv +€209,D°c® + ib20, A%+ mP AZAZ
m The GZ and CF model introduce a non-perturbative mass term for
the gluon (in agreement with lattice results) — Avoid a Landau pole,
perturbation theory in the non-perturbative region.
m Can we use the GZ/CF model to describe the
confinement/deconfinement transition? Not in the Landau gauge:
no explicit center symmetry.
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Background Field gauge Methods

m In the BFG formalism, an arbitrary background field Zy is
introduced: a2 = A2 — A..

m We go from the Landau gauge BHAf} = 0 to the Landau-deWitt
gauge (D a)3 = 0, Eib = 0,69 — fabeAC.

m The center symmetry is now governed by the background field
symmetry.

m The Polyakov loop is now its functional expression at the minimum
of a background field potential V.
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Other results

To(MeV)
Lattice | CF at 1-loop ? | CF at 2-loop °
SU@) | 295 | 238 284
SU(3) | 270 185 254
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we hope to report on the 2-loop GZ results soon!
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