

The *Quarkonia as Tools* workshop series: change the paradigm

J.P. Lansberg

IJCLab Orsay - Paris Saclay U. - CNRS

March 8, 2021 GDR QCD Annual meeting, March 8-10, 2021

J.P. Lansberg (IJCLab)

Quarkonia as Tools March 8, 2021

• A common place to speak, listen, eat, drink, sleep, joke, think, ...

March 8, 2021 2 / 4

- A common place to speak, listen, eat, drink, sleep, joke, think, ...
- Enough time to let everybody express his/her doubts and views, to ask things they never dared asked before, to realise that one in fact (dis)agrees, ...

▶ ₹ からで

J.P. Lansberg (IJCLab) Quan

- A common place to speak, listen, eat, drink, sleep, joke, think, ...
- Enough time to let everybody express his/her doubts and views, to ask things they never dared asked before, to realise that one in fact (dis)agrees, ...
- People more motivated to learn and explain than to advertise their latest work;

(anal 0 2021 2/4

- A common place to speak, listen, eat, drink, sleep, joke, think, ...
- Enough time to let everybody express his/her doubts and views, to ask things they never dared asked before, to realise that one in fact (dis)agrees, ...
- People more motivated to learn and explain than to advertise their latest work;
- An affordable location in an extremely nice environment;

(anal 0 2021 27/4

- A common place to speak, listen, eat, drink, sleep, joke, think, ...
- Enough time to let everybody express his/her doubts and views, to ask things they never dared asked before, to realise that one in fact (dis)agrees, ...
- People more motivated to learn and explain than to advertise their latest work;
- An affordable location in an extremely nice environment;
- A good balance between experimentalists and theorists;

J.P. Lansberg (IJCLab)

- A common place to speak, listen, eat, drink, sleep, joke, think, ...
- Enough time to let everybody express his/her doubts and views, to ask things they never dared asked before, to realise that one in fact (dis)agrees, ...
- People more motivated to learn and explain than to advertise their latest work;
- An affordable location in an extremely nice environment;
- A good balance between experimentalists and theorists;
- Priority to young participants: reviews given by PhD students and postdocs, no question during the talks, Q&A sessions only for young people.

J.P. Lansberg (IJCLab)

- A common place to speak, listen, eat, drink, sleep, joke, think, ...
- Enough time to let everybody express his/her doubts and views, to ask things they never dared asked before, to realise that one in fact (dis)agrees, ...
- People more motivated to learn and explain than to advertise their latest work;
- An affordable location in an extremely nice environment;
- A good balance between experimentalists and theorists;
- Priority to young participants: reviews given by PhD students and postdocs, no question during the talks, Q&A sessions only for young people.
- A seemingly unsolvable puzzle : quarkonium production!

J.P. Lansberg (IJCLab) Quarkonia as Tools

- QaT 2019: https://indico.cern.ch/e/OniumTools2019:
 - 41 participants,
 - 26 talks,
 - 10h of round tables,
 - 2h30 of question time (50% reserved to young participants) and
 - 25h of free time to chat, hike or ski ...

- QaT 2019: https://indico.cern.ch/e/OniumTools2019:
 - 41 participants,
 - 26 talks,
 - 10h of round tables.
 - 2h30 of question time (50% reserved to young participants) and
 - 25h of free time to chat, hike or ski ...
- QaT 2020: https://indico.cern.ch/e/OniumTools2020:
 - 63 participants,
 - 53 talks,
 - · about 10h of discussions and question times and
 - 23h30 of free time ...

- QaT 2019: https://indico.cern.ch/e/OniumTools2019:
 - 41 participants,
 - 26 talks,
 - 10h of round tables.
 - 2h30 of question time (50% reserved to young participants) and
 - 25h of free time to chat, hike or ski ...
- QaT 2020: https://indico.cern.ch/e/OniumTools2020:
 - 63 participants,
 - 53 talks.
 - about 10h of discussions and question times and
 - 23h30 of free time ...
- vQaT 2021: https://indico.cern.ch/e/OniumTools2021:
 - Virtual meeting;
 - All the speakers (45+) but one are junior (PhD or postdocs)
 - The registration is still open.

- QaT 2019: https://indico.cern.ch/e/OniumTools2019:
 - 41 participants,
 - 26 talks,
 - 10h of round tables.
 - 2h30 of question time (50% reserved to young participants) and
 - 25h of free time to chat, hike or ski ...
- QaT 2020: https://indico.cern.ch/e/OniumTools2020:
 - 63 participants,
 - 53 talks,
 - about 10h of discussions and question times and
 - 23h30 of free time ...
- vQaT 2021: https://indico.cern.ch/e/OniumTools2021:
 - Virtual meeting;
 - All the speakers (45+) but one are junior (PhD or postdocs)
 - The registration is still open.
- QaT' 2021: hopefully in Aussois during the week of June 20, 2021.

 In 2019 and 2020, we mostly focused on the LHC

Perspectives for quarkonium studies at the high-luminosity LHC

Émilien Chapon-¹¹, David d'Enternia¹¹, Bertrand Ducloué¹¹, Miguel G. Echevarria¹¹, Pol-Bernard Gossiaux-¹¹, Vato Karrvelishvili¹³, Tomas Kasemets¹³, Jean-Philippe Lansbergha¹, Ronan McNulty¹⁴, Darren D. Price¹³, Hua-Sheng Shao¹³, Charlotte Van Hulse¹³, Michael Winn¹³, Jaroslav Adam¹⁷, Liupan An¹³, Denys Yen Arrebato Villar¹, Shohini Bhattacharya¹³, Francesco G. Celbertoria¹³, Cvetan Cheskkov¹³, Umber Di O'Alesio¹, Cesar da Silva¹³, Elen G. Ferrciro¹³, Chris A. Flett¹⁹, Carlo Flore¹, Maria Vittoria Garzelli¹³, Donathan Gaune¹⁴, Jibo He³⁴, Yannis Makris¹, Cyrille Marqueri¹⁴, Lauren Karnis¹⁵, Marcin Almali¹⁸, Picard Scapara¹⁸, Maxim A. Nefedov¹³, Melih A. Ozcelik¹⁸, Biswarup Paul¹⁷, Cristian Pisano¹, Jian-Wei Qiu¹, Sangen Rajesh¹⁸, Matto Rinaldi¹⁸, Florent Scapara¹⁸, Maddi¹⁸, Smith¹⁸, Pieter Taels¹⁸, Amy Tee¹, Oleg Teryaev¹⁸, Ivan Vitev¹⁸, Kazuhiro Watanabe¹⁸, Nodoka Yamanaka^{18,20}, Xisoiun Yao¹⁹, Yani Zhang^{28,30}, Yani Zhang^{28,30}

Abstract

We review the prospects for quarkonium-production studies in proton and nuclear collisions accessible during the upconing phases of the CERN Large Hadron Collider operation after 2011, including the ultimate high-luminosity phase, with increased luminosities compared to LHC Runs 1 and 2. We address the current experimental and theoretical open issues in the field and the perspectives for future studies in quarkonium-related physics through the exploitation of the huge data samples to be collected in proton-proton, with integrated luminosities reaching up to L = 3 a h^{-1} , in proton-nucleas and in nucleus-nucleus collisions, both in the collider and fixed-target modes. Such investigations include, among others, those of: (i) the quarkonia produced in association with other hard particles; (ii) the $\chi_{\rm Q}$ and $\eta_{\rm Q}$ down to small transverse momenta; (iii) the constraints brought in by quarkonia on gluon PDFs, nuclear PDFs, TMDs, GPDs and GTMDs, as well as on the lower sparn of synamics; (iv) the gluon Sivers effect in polarised-nucleon collisions; (v) the properties of the quark-gluon plasma produced in ultra-relativistic heavy-ion collisions and of collective narronic effects in energical and (vi) double and trition bard no starterines.

- In 2019 and 2020, we mostly focused on the LHC
- → writing of a 100+ page review on quarkonium production at the HL LHC

[sollicited by Prog. Part. Nucl. Phys., Elsevier]

Perspectives for quarkonium studies at the high-luminosity LHC

Emilien Chapom^{3.}, David d'Emernia^{3.}, Bertrand Ducloue^{3.}, Miguel G. Echevarria^{4.},
Pol-Bernard Gossauc^{4.}, Van Karvelishvilid^{7.}, Drums Kasemets^{4.}, Lean-Philippe Lansbergh^{3.},
Ronan McNuly^{4.}, Darren D. Pricci^{4.}, Hua-Sheng Shao^{5.}, Charlotte Van Hulse^{4.}, Michael Winn^{1.},
Jaroslav Adam^{18.}, Liupan Ani⁷, Denys Yen Arrebato Villar^{4.}, Shohini Bhattacharya^{9.}
Francesco G. Ceiberno^{36.4.}, Cvean Cheshkovi^{4.}, Unberto D'Alesio^{7.}, Cosar da Silva^{7.}, Elena G. Ferreiro^{3.},
Criris A. Fiett^{9.2.}, Carlo Flore^{3.}, Maria Vittoria Garzelli^{56.20,5}, Jonathan Gaunti^{56.31}, Jibo Hey^{4.},
Yiannis Makris, 'Cyrille Marquee', Luure Massacrie^{7.}, Thomas Mehrei, 'Cedric Merzeg', Luca Micheletti⁸, Riccardo Nagar⁵⁰, Maxin A. Nefedovi^{8.}, Melih A. Ozeclik^{8.}, Biswarup Paul^{7.},
Cristian Pisano^{7.}, Jian-Wel Qin^{8.2.}, Sagnem Rajesh^{8.5.}, Matto Rinaldi^{8.4.}, Ploren Scarpi^{3.6.5.}, Madide Smith⁶,
Pieter Taels⁵⁰, Amy Tee⁶, Oleg Teryase⁵⁰⁰, Ivan Viter^{8.6.}, Kazuhiro Watanabe^{8.6.5.}, Nodoka Yamanaka^{500,500}, Xiouni Yao⁵⁰, Yani Zhang⁵⁰⁰, Sari Zhang⁵⁰⁰,

Abstract

We review the prospects for quarkonium-production studies in proton and nuclear collisions accessible during the upcoming phases of the CERN Large Hadron Collider operation after 2011, including the ultimate high-luminosity phase, with increased luminosities compared to LHC Runs 1 and 2. We address the current experimental and theoretical open issues in the field and the perspectives for future studies in quarkonium-related physics through the exploitation of the huge data samples to be collected in proton-proton, with integrated luminosities reaching up to L = 3 and 1 in proton-unclease and in nucleus-nucleus collisions, both in the collider and fixed-target modes. Such investigations include, among others, those of: (i) the quarkonia produced in association with other hard particles; (iii) the $\chi_{\rm Q}$ and $\eta_{\rm Q}$ down to small transverse moment; (iii) the constraints brought in by quarkonia on gluon PDFs, nuclear PDFs, TMDs, GPDs and GTMDs, as well as on the low-x-parton dynamics; (iv) the gluon Sivers effect in polarised-enucleon collisions; (v) the properties of the quark-gluon plasma produced in ultra-relativistic heavy-ion collisions and of collective partonic effects in energical and (vi) double and tritine parton scatterines.

- In 2019 and 2020, we mostly focused on the LHC
- → writing of a 100+ page review on quarkonium production at the HL LHC

[sollicited by Prog. Part. Nucl. Phys., Elsevier]

• In 2021, focus on the EIC (> 25% of the time)

Perspectives for quarkonium studies at the high-luminosity LHC

Abstract

We review the prospects for quarkonium-production studies in proton and nuclear collisions accessible during the upconing phases of the CERN Large Hadron Collider operation after 2011, including the ultimate high-luminosity phase, with increased luminosities compared to LHC Runs 1 and 2. We address the current experimental and theoretical open issues in the field and the perspectives for future studies in quarkonium-related physics through the exploitation of the huge data samples to be collected in proton-proton, with integrated luminosities reaching up to L = 3 a h^{-1} , in proton-nucleas and in nucleus-nucleus collisions, both in the collider and fixed-target modes. Such investigations include, among others, those of: (i) the quarkonia produced in association with other hard particles; (ii) the $\chi_{\rm Q}$ and $\eta_{\rm Q}$ down to small transverse momenta; (iii) the constraints brought in by quarkonia on gluon PDFs, nuclear PDFs, TMDs, GPDs and GTMDs, as well as on the lower sparn of synamics; (iv) the gluon Sivers effect in polarised-nucleon collisions; (v) the properties of the quark-gluon plasma produced in ultra-relativistic heavy-ion collisions and of collective narronic effects in energical and (vi) double and trition bard no starterines.

- In 2019 and 2020, we mostly focused on the LHC
- → writing of a 100+ page review on quarkonium production at the HL LHC

[sollicited by Prog. Part. Nucl. Phys., Elsevier]

- In 2021, focus on the EIC (> 25% of the time)
- Aim: write an add-on about quarkonium production to the EIC Yellow Report

Perspectives for quarkonium studies at the high-luminosity LHC

Emilien (Chapona¹), David d'Enternia¹). Bettrand Ducloue²¹. Miguel G. Echevarria^{2,1}. Pol-Bernard Gossianc^{2,1}. Van Karvelishvili². Tomas Kasemets^{2,2}. Lean-Philippe Landserpa^{3,2}. Ronan McNulty^{2,1}. Darren D. Price^{2,1}. Hua-Sheng Shao^{3,1}. Charlotte Van Hulse^{2,1}. Michael Winni¹. Jaroslav Adam²¹. Liupan Ari¹. Denys Yen Arreboto Villar², Stohim Bhattachaya^{2,1}. Francesco G. Ceibroto^{3,2,2}. Cetan Cheshoo^{2,2}. Horne Ao Facisi^{2,2}. Cetan da Silva^{2,2}. Elena G. Ferreiro³. Chris A. Flett^{2,2}. Carlo Flore^{3,2}. Maria Vittoria Garzelli^{3,2,2,3,3}. Jonathan Gaunti^{2,4,3}. Jho He^{3,4}. Yinnin Shafkri³. Cyrille Marque^{2,4}. Luare Masscrie^{4,7}. Thomas Mehrei^{4,7}. Cédric Merzeg⁴. Luca Micheletti⁸. Riccardo Nagar^{3,4}. Maxim A. Nefedov^{4,4}. Melih A. Ozecili^{3,4}. Biswarup Paul⁴. Cristian Pisano^{3,4}. Jian-Wel Qini^{3,4}. Sagnem Rajesh^{5,4}. Mator Rinaldi^{4,4}. Floren Escap^{3,4,4}. Madide Smith⁴, Pieter Taels^{4,4}. Amy Tee⁴. Ole Teryasc^{4,4,4}. Navi Yano⁴. Kazuhiro Watanabe^{4,4,4,4,4}. Nodoka Yamanaka^{4,4,5,4}. Xioniun Yao^{5,4}. Naxi Zhane^{5,5,4,4}.

Abstract

We review the prospects for quarkonium-production studies in proton and nuclear collisions accessible during the upcoming phases of the CERN Large Hadron Collider operation after 2021, including the ultimate high-luminosity phase, with increased luminosities compared to LHC Runs 1 and 2. We address the current experimental and theoretical open issues in the field and the perspectives for future studies in quarkonium-related physics through the exploitation of the huge data samples to be collected in proton-proton, with integrated luminosities reaching up to $\mathcal{L}=3$ a h^{-1} , in proton-nucleas and in nucleus-nucleus collisions, both in the collider and fixed-target modes. Such investigations include, among others, those of: (i) the quarkonia produced in association with other hard particles; (iii) the $\mathcal{L}_{\mathcal{L}}=0$ and $\mathcal{L}=0$ and $\mathcal{L}_{\mathcal{L}}=0$ a