GDR QCD working group "QCD at low energy"

Assemblée Générale, 8 – 10 March 2021

- use analytical tools to describe phenomena in a regime where usual perturbation theory is not reliable
- compute hadronic quantities by ab-initio approaches
- study suitable low energy processes to detect effects of New Physics
- investigate color confinement and chiral symmetry breaking in background magnetic fields and high vorticity
- examine transport effects in QCD generated by the conformal anomaly
- open question: solve QCD with machine learning?

WG coordinators

Benoît Blossier CNRS/IJCLsb Orsay Lattice QCD, flavour physics (*B* and *D*)

Research projects in next years:

distribution amplitudes of charmonia associated to $h \to J/\psi\gamma$

multihadronic systems

 ${\cal B}$ physics from simulations at the physical poin

- (Т	Т													
- 1					Т	Т													
- [
- [Т													
- [
_ I			Ц	Ц	_	1	L												
_ I			Ц	Ц	_	1	∟	Ц	Ц		∟			Ц	Ц		Ц		
			Ц	Ц	_	4	⊢	Ц	Ц		∟			Ц	Ц		Ц		
			Ц	Ц	_	4	L				∟				Ц		Ц		
- 1	_	+	Ц	Ц	+	+-	¥	Ц	Ц	1	L	Ц			Ц				
- I	_		н	4	+	+-	44			И	⊢				н	Н			
- I	_	+	н	Ц	+	╇	⊢		1	Н	⊢	н	Н	Н	н	Н	н		
- I	-	++	н	Ц	+	╇	⊢	н	Н	Н	⊢	н	н	н	н	Н	н		
- I	-	++	н	Ц	+	╇	⊢	н	Н	Н	⊢	н	н	н	н	Н	н		
- ł	-	++	н	н	+	┿	⊢	Н	Н	Н	⊢	н	н	н	н	Н	н	-	
- ł	-	++	н	н	+	┿	⊢	Н	Н	Н	⊢	н	н	н	н	Н	н	н	
- H	-	++	н	н	+	÷	⊢	Н	Н	Н	⊢	н	н	н	н	Н	н	-	
- H	+	++	н	н	+	┿	⊢	Н	Н	Н	⊢	н	н	н	н	Н	н	н	
- H	+	+	н	H	┿	╈	⊢	Н	Н	Н	⊢	Н	Н	Н	н	Н	Н	Н	
					_		_				_								

cut-off effects

cut-off effects

Maxim Chernodub, CNRS/Institut Denis Poisson (Tours-Orléans) Lattice QFT and QCD; non-perturbative analytical approaches

Coming projects:

- Lattice Electroweak Model in magnetic fields (numerical): phase structure, electroweak symmetry restoration,
 → implications for the early Universe;
- Quark-gluon plasma in rotation (analytical): inhomogeneities, deconfinement and chiral symmetry, spin polarization and transport effects in vortical plasmas,
 → implications for non-central heavy-ion collisions;
- Scale symmetry breaking in QCD and QED (analytical): anomaly-induced transport effects and instabilities in thermal and gravitational backgrounds;
 - \rightarrow evolution of Quark-Gluon plasma
 - \rightarrow astrophysical applications in Lorentz-violating extensions of the Standard Model
- Casimir effects in lattice QCD (numerical): properties of QCD in a-few-femtometer-sized spherical bags, quark-gluon droplets;
 → implications for bag models of hadrons

Cédric Mezrag, Irfu-CEA, Université Paris-Saclay

Main reasearch topics: Hadron structure through non-perturbative continuum techniques

- Dyson-Schwinger and Bethe-Salpeter Equations
 - Minkowski space developments
 - Symmetry-preserving truncations
- Hadron Structure:
 - models based on continuum techniques for mesons and baryons (PDFs, GPDs, DAs, and TDAs in the future)
 - numerical implementations of evolution equations
- Phenomenology for current and future facilities (JLab, EIC, EICC,...)
 - member of the PARTONS project

WG activities in France

Lattice QCD Teams at LPC Clermont, LPSC Grenoble, CPT Marseille, IJCLsb Orsay, IDP Tours-Orléans flavour physics, QCD at finite chemical potential, muon g - 2, parton distribution functions, infrared regime of QCD

Analytical approaches: effective field theories, Schwinger-Dyson equations, potential models, dispersion relations

Teams at LPC Clermont, CEA/Irfu,

CPT Marseille, L2C Montpellier, IJCLab Orsay CPhT Palaiseau, APC Paris, IDP Tours-Orléans light-cone physics, muon g - 2, hadron form factors QCD in the infrared regime, QCD in external field

Experimental effort

Teams at LPSC Grenoble, IJCLab Orsay, LPNHE Paris

moments of inclusive decays, muon g - 2, neutron electric dipole moment

WG events

We plan to organise an event per year, within our WG or with other WGs of the GDR.

- Fall 2021 or Winter 2022: workshop dedicated to rotating quantum systems in background magnetic field. Emphasis on quark-gluon plasma with large angular momentum created in non-central heavy-ion collisions. WGs 2 and 5. Place: Tours
- Fall 2022: third edition of the workshop series "Progress in algorithms and numerical tools for QCD". All WGs. Place: Orsay
- 2023: workshop on "Analogous QCD"
- 2024: school on analytical methods

Workshop on highly vortical Quark-Gluon Plasma (and on QFT in rotation and in strong magnetic fields, in general)

Who: WG2 and WG5; When: Fall 2021 or Winter 2022; Where: Tours

Motivation: Noncentral heavy-ion collisions create rapidly rotating quark-gluon plasma with (long-lasting) angular momentum subjected to (shorter-living) strong magnetic field

"The most vortical fluid ever observed"

 $\omega \approx (9 \pm 1) \times 10^{21} \, \mathrm{s}^{-1}$

High vorticity / frequency of rotation

The STAR Collaboration, Nature 62, 548 (2017)

Topics:

- Spin and Hydrodynamics in Relativistic Nuclear Collisions
- Effects of rotation in QCD phase diagram
- Anomalous transport phenomena in vortical fluids
- Combined effects of rotation and magnetic field