

HL-LHC challenges :

- Pileup $<\mu>\sim$ 200
- Stochastic pileup jets
- z spread: 150ps (≈ 44mm nominal)
- t spread: 175ps (nominal)

To encounter the HL-LHC challenges, **The High-Granularity Timing** Detector(HGTD) is a new detector proposed to resolve the temporal spread of a bunch crossing

Figure 1. HGTD

- **30-50 ps per track**
- Forward region, 2.4 < < 4.0</p> Timing resolution from
- Use timing to resolve the vertices «equal» in z, but distributed in time

Objectives

- Introduce t_0 calibration.
- Results.
- How to compute calibration constants.

Why do we need t_0 calibration?

- The time of arrival of a hit measured in HGTD (t_{hits}) will be different between pads due to electronics contributions :
- Flex, lpGBT, FELIX,...
- The different jitter contributions have been parametrized using MC samples.

Figure 2. Source of electronics imperfections.

HGTD in ATLAS : Simulation study of t_0 calibration for HL-LHC

Thourji Abdellah for the ATLAS collaboration | RJP 2021¹ ¹LPC Clermont-Ferrand, CNRS/IN2P3, Université Clermont Auvergne, France

t_0 calibration methodology

The calibration constants are calculated at regular intervals of events as the arithmetic mean of t_{hits} distributions.

Figure 3. Hits in HGTD

The number of events and Special granularity used to compute $< t_{hits} >$ strongly affects the precision of the calibration constants.

Calib. per circl : constants calibration per layer and circles defined by dR=40.

Calib. per row : constants computed per layer and per row, as defined by the readout electronics

Figure 4. Calibration Methods

• Time1kHz : t_{hits} + jitter contributions.

Figure 5. Calibration constant vs Event number. Calibration every 10 event.

Result 1

The injected 1kHz fluctuation is clearly visible.

• $t_{calib} = t_{hits} - \langle t_{hits} \rangle$ where :

 $< t_{hits} >$ = calibration constant

ATLAS Simulation Work in progress tī <µ> = 200, nevnt : 1434 HGTD z > 0 0.025 Time full1kHz Numbre_{bunchevent}=143 / bunch_{Event} = 10 0.02 0.015

-1

Calib. per module : constants calibration is computed at level of module.

Calib. per layer : constants calibration is computed at level of layer.

Calib. per inclusive : constants calibration is l computed at level of 2 <u>×[mm]</u> disks.

Figure 6. t_{hits} calibrated every 10 events.

0.01

0.005

-2

- show smaller RMS distribution.
- variation.

Time of flight (ToF) effects

Figure 7. Time calibrated vs module radius

• ToF effects are absorbed using the calibration per module method.

[1] ATLAS Collaboration Technical Design Report: A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade CERN-LHCC-2020. CERN Geneva : https://cds.cern.ch/record/2721909?

Timing correction

time_{calib} [ns]

Result 2

Calibration per module and using short interval of event

Calibration per module best absorb the effect of 1khz

Result 3

References