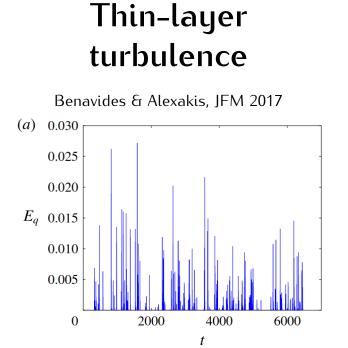
On-off intermittency due to parametric Lévy noise

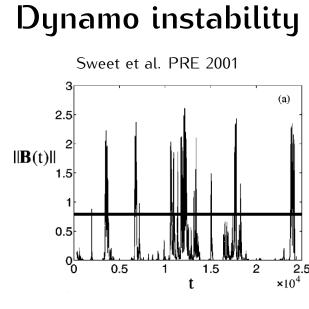
Adrian VAN KAN^a, Alexandros ALEXAKIS, Marc BRACHET

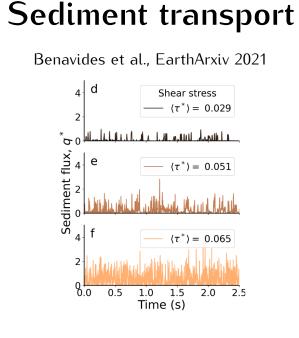
LPENS Paris, a avankan@ens.fr

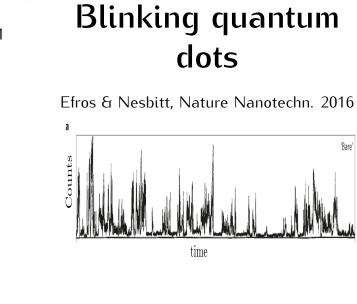
Multiplicative noise and on-off intermittency

- Instabilities arise in many systems at a parameter threshold (e.g. onset of convection, 3D instabilities in quasi-2D flows, dynamo instability, sediment transport, etc.)
- Typically, the system is embedded in an uncontrolled noisy environment.
- The fluctuating properties of the environment affect the control parameters of the instability, which leads to parametric (also known as multiplicative) noise.
- Parametric noise close to an instability threshold causes on-off intermittency, switching aperiodically between a large-amplitude "on" state and a small-amplitude "off" state.









• The noisy supercritical pitchfork bifurcation gives a minimal example of this behaviour

$$\dot{X} = (\mu + f(t))X - \gamma X^3,\tag{1}$$

with mean growth rate μ , nonlinear coefficient $\gamma \geq 0$, and the random noise f(t).

(Generalised) central limit theorem & stable laws

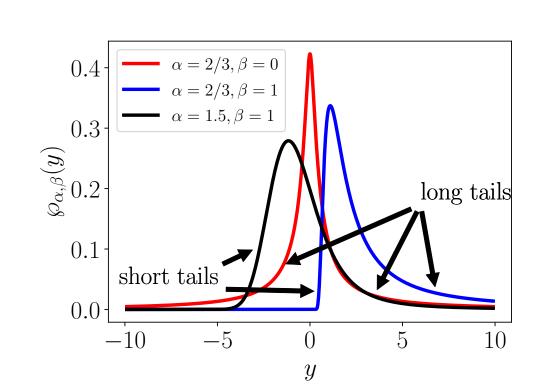
• Typically f(t) in (1) is taken to be Gaussian white noise. This is motivated by the **CLT**:

Given N identically distributed RVs X_1, \ldots, X_N with mean 0 and variance σ^2 , then $S_N = (X_1 + ... + X_N)/\sqrt{N} \xrightarrow{N \to \infty} S \sim \mathcal{N}(0, \sigma^2)$, if and only if

- 1) The X_i are mutually independent, i.e. $\langle X_i X_j \rangle = 0$ for $i \neq j$ and
- 2) *X* has finite variance.
- Both assumptions of the CLT may be violated when choosing f(t).
- 1) If noise has finite correlation time \Rightarrow spectrum at zero frequency important [?].
- 2) If noise has infinite variance \Rightarrow noise from non-equilibrium source (no temperature)
- Generalised CLT for 2): the scaled sum of the X_i tends to a stable distribution $\wp_{\alpha,\beta}(x)$,

$$\varphi_{\alpha,\beta}(k) = \langle e^{ikx} \rangle = \int_{-\infty}^{\infty} e^{ikx} \varphi_{\alpha,\beta}(x) dx = \exp\left\{-|k|^{\alpha} \left(1 - i\beta \tan\left(\frac{\alpha\pi}{2}\right)\right)\right\}.$$

- Some simple properties of stable distributions
- \rightarrow Choosing $\alpha = 2$ gives Gaussian
- \rightarrow For $\wp_{\alpha,\beta}(x) \ge 0 \Rightarrow 0 < \alpha \le 2, -1 \le \beta \le 1$.
- \rightarrow For $|\beta| < 1$, $\wp_{\alpha,\beta}(x) \stackrel{x \to \pm \infty}{\sim} (1 + \beta \operatorname{sign}(x)) x^{-1-\alpha}$.
- \rightarrow This breaks down on one side for $\beta = \pm 1$. There, $\wp_{\alpha,\beta}(x) \propto \exp\left(-cst. x^{\frac{\alpha}{\alpha-1}}\right)$
 - \Rightarrow one-sided distribution for $\beta = \pm 1$, $\alpha < 1$.



The fractional Fokker-Planck equation

• For (1) with α -stable white noise $(f(t)dt = dt^{1/\alpha}F(t), F(t), \alpha$ -stable), the PDF of X obeys

$$\partial_t p_X(x,t) = -\partial_x [(\mu x - \gamma x^3) p_X(x,t)] + \mathcal{D}_x^{\alpha,\beta} p_X(x,t), \tag{2}$$

the (Stratonovich) fractional Fokker-Planck equation, where $\mathcal{D}_{x}^{\alpha,\beta}$ is a linear operator. The variable log(X) performs a **Lévy flight**.

• For $\alpha=2$ (Gaussian white noise), $\mathcal{D}_{x}^{\alpha,\beta}=\partial_{x}^{2}$. There for $\mu>0$, the stationary PDF is

$$p_{st}(x) = Nx^{-1+\mu}e^{-\frac{\gamma}{2}x^2}$$
 (3)

Some important properties

- \rightarrow Critical transition at $\mu = 0$ (deterministic threshold)
- \rightarrow Power law divergence at small x with exponent $\rightarrow -1$ as $\mu \rightarrow 0$, cut-off at large x
- \rightarrow Anomalous scaling near onset: for all n > 0, $\langle X^n \rangle \propto \mu$ as $\mu \rightarrow 0$
- **Goal**: extend this result to $\alpha < 2$.
- Problem: Can only solve (2) analytically for $\gamma = 0$, the log-stable process,

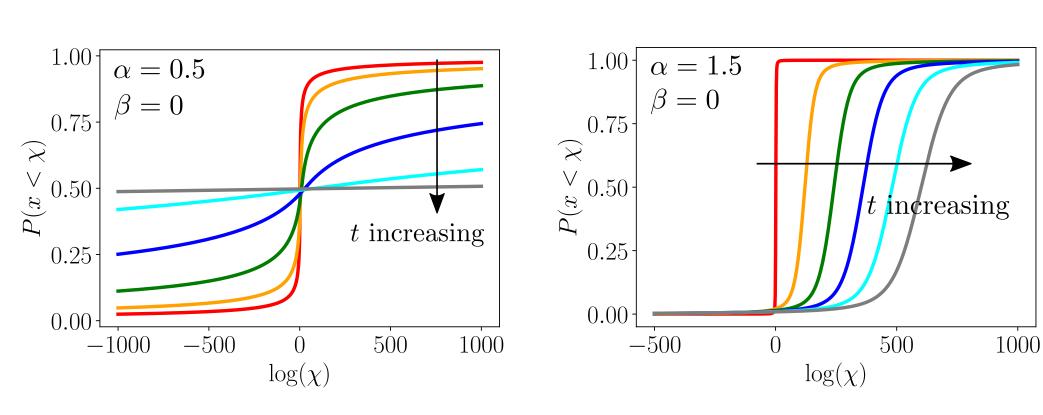
$$p_X(x,t) = \frac{\wp_{\alpha,\beta}\left(\frac{\log(x) - \mu t}{t^{1/\alpha}}\right)}{v_t 1/\alpha},\tag{4}$$

which does not converge to a stationary state, since probability escapes to $\pm \infty$.

• For $\gamma > 0$, a stationary state exists and its asymptotics can be computed.

The linear regime $(\gamma = 0)$

The leakage of probability depends on α , β and μ in this case. E.g. for $\mu > 0$, $\beta = 0$,

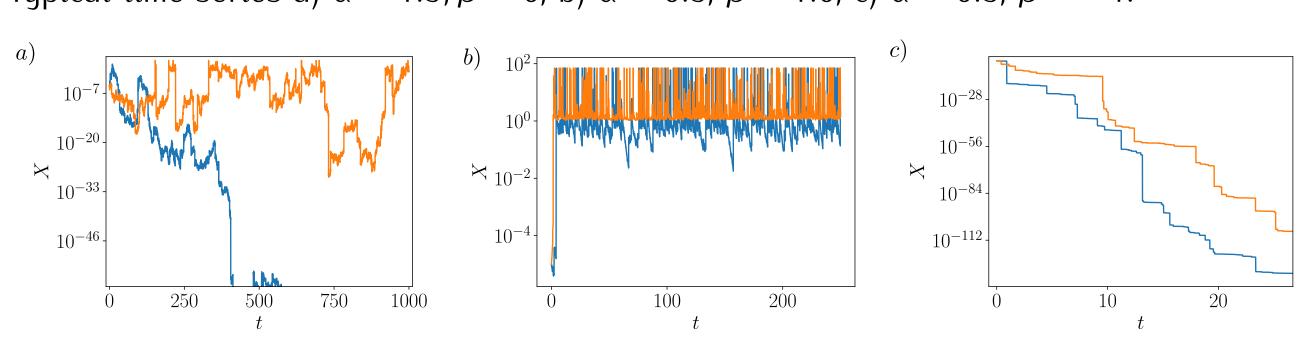


Critical difference: $\alpha > 1$ (mean of noise finite) and $\alpha \le 1$ (mean of noise infinite)

- For $1 < \alpha < 2$: critical transition at $\mu = 0$ from probability accumulating at x = 0(stable origin) or leaking to $x = \infty$ (unstable origin).
- For $\alpha = 1$, and for $\alpha < 1$, $\beta < 1$, the origin is always stable
- For $\alpha < 1$, $\beta = 1$ (noise positive definite), the origin is always unstable

The nonlinear regime $(\gamma > 0)$

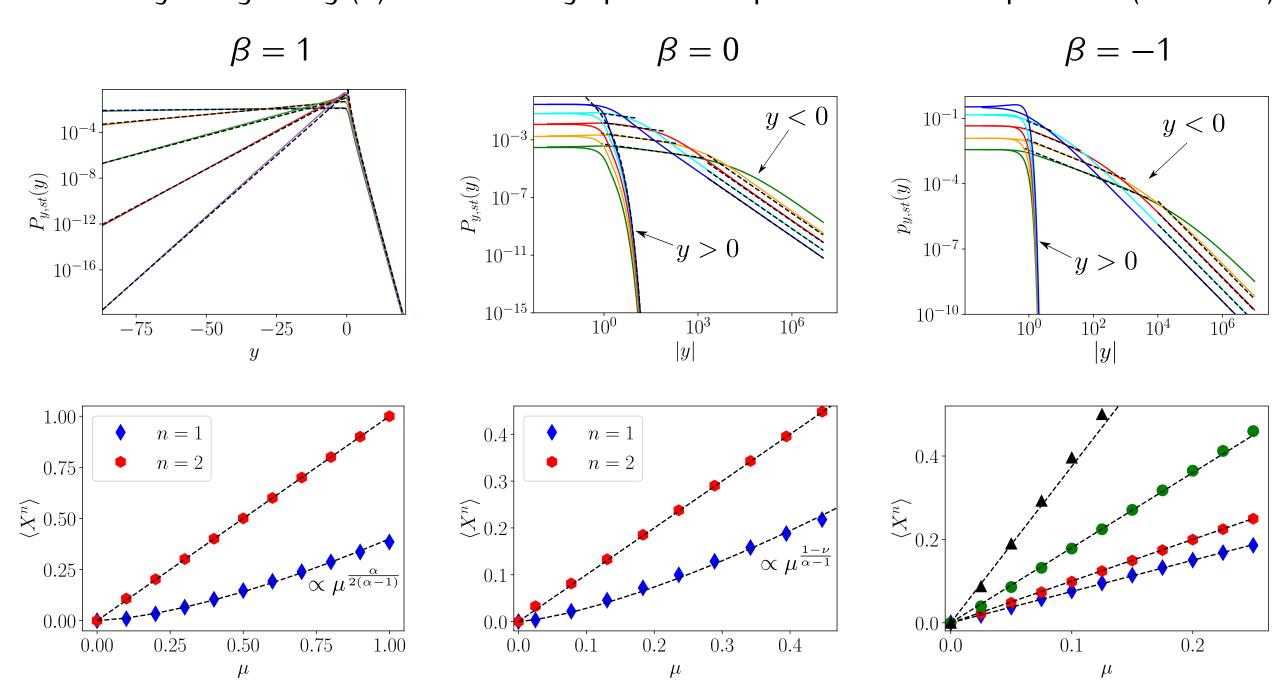
Typical time series a) $\alpha = 1.5$, $\beta = 0$, b) $\alpha = 0.5$, $\beta = 1.0$, c) $\alpha = 0.5$, $\beta = -1$.



A critical transition only occurs for $\alpha > 1$. Else, the origin is either always stable/unstable. The exact asymptotics of $p_{X,St}$ in steady state are summarised in the table below

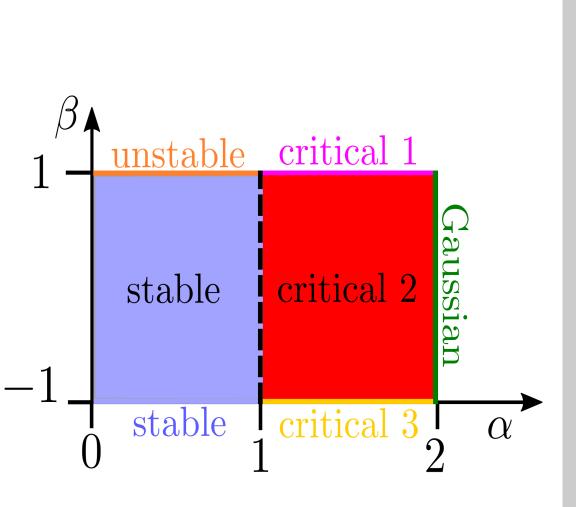
$oldsymbol{eta}$	$p_{x,st}(x \to 0)$	$p_{x,st}(x\to\infty)$
– 1	$C(\mu x)^{-1} \log^{-\alpha}(1/x)$	exponential decay
(-1, 1)	$C(\mu x)^{-1} \log^{-\alpha}(1/x)$	$C\gamma^{-1}x^{-3}\log^{-\alpha}(x)$
1	$\propto x^{-1+A_{\alpha}(\mu)}$	$C v^{-1} x^{-3} \log^{-\alpha}(x)$

Numerically integrating (2) confirms asymptotics \Rightarrow predict critical exponents (heuristic)



Conclusion and Outlook

We have shown that instabilities subject to parametric heavy-tailed noise, modeled as Lévy white noise, can display anomalous critical exponents differing from those for Gaussian noise. Our work serves as a first step in the study of instabilities in the presence of multiplicative Levy noise. Many directions can be further pursued. The exponents of the intermediate power laws at β < 1 remain unknown. Other topics of interest include truncated Lévy noise, combined Lévy-Gaussian noise, finite-velocity Lévy walk, different nonlinearities, higher dimensions and time statis- $-1\,$ tics. Since Lévy statistics are found in many physical systems, one may speculate that the anomalous critical exponents predicted here for instabilities subject to Lévy noise may be observable experimentally.



References

- [1] Aumaitre et al. Low-Frequency Noise Controls On-Off Intermittency of Bifurcating Systems. PRL 2005
- [2] A. van Kan et al. Lévy on-off intermittency. arXiv:2102.08832, 2021