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Multiplicative noise and on-off intermittency

e Instabilities arise in many systems at a parameter threshold (e.g. onset of convection,
3D instabilities in quasi-2D flows, dynamo instability, sediment transport, etc.)

e Typically, the system is embedded in an uncontrolled noisy environment.

e The fluctuating properties of the environment affect the control parameters of the insta-
bility, which leads to parametric (also known as multiplicative) noise.

e Parametric noise close to an instability threshold causes on-off intermittency, switching
aperiodically between a large-amplitude “on” state and a small-amplitude “oft” state.
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The linear regime (y = 0)

The leakage of probability depends on «, 5 and p in this case. E.g. for y > 0,5 =0,
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Critical difference: a > 1 (mean of noise finite) and a < 1 (mean of noise infinite)

e For 1 < a < 2: critical transition at gy = 0 from probability accumulating at x =0
(stable origin) or leaking to x = oo (unstable origin).

efFor a =1, and for o < 1, B < 1, the origin is always stable

e The noisy supercritical pitchfork bifurcation gives a minimal example of this behaviour

X = (u+ F()X — yX°, (1)

with mean growth rate p, nonlinear coefficient y > 0, and the random noise f(t).

(Generalised) central limit theorem & stable laws

e Typically f(t) in (1) is taken to be Gaussian white noise. This is motivated by the CLT:

Given N identically distributed RVs Xj,..., Xn with mean 0 and variance o2, then

SN = (X1 + . + Xn) VN Y22 S~ A(0, 62), if and only if
1) The X; are mutually independent, i.e. (X;X;) =0 for i # j and

2) X has finite variance.

e Both assumptions of the CLT may be violated when choosing f(t).

1) If noise has finite correlation time = spectrum at zero frequency important [?].

2) I noise has infinite variance = noise from non-equilibrium source (no temperature)

e Generalised CLT for 2): the scaled sum of the X; tends to a stable distribution p, g(x),
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(x)dx = exp {—|l<|a (1 — iBtan (7) ) } .

e Some simple properties of stable distributions

— Choosing a = 2 gives Gaussian 041 — Zz;g:?j
—For papx) >20=>0<a<2, -1<B< 1 03 — em el
N
= For [B] <1, pa,p(x) = (14 Bsign(x))x~1=% Toa long tails
— This breaks down on one side for g = +1. 0.1
There, p, g(Xx) o< exp (—Cst. XaT . short tails
= one-sided distribution for B = +1, a < 1. 0 s 0 g 10

The fractional Fokker-Planck equation

e For (1) with a-stable white noise (f(t)dt = c/t”al—_(t), F(t) a-stable), the PDF of X obeys

0epx(x, t) = —ax[(1x — v )px(x, )] + B P px(x, 1), (2)

: . . a,B . :
the (Stratonovich) fractional Fokker-Planck equation, where D B is a linear operator.
The variable log(X) performs a Lévy flight.

e For a = 2 (Gaussian white noise), DXa’B = 02. There for py > 0, the stationary PDF is

_ _ Y2
pet(x) = Nx—1HHe™2X (3)
Some important properties

— Critical transition at gy = 0 (deterministic threshold)
— Power law divergence at small x with exponent — —1 as p — 0, cut-off at large x
— Anomalous scaling near onset: forall n > 0, (X" xpas p— 0

e Goal: extend this result to a < 2.

e Problem: Can only solve (2) analytically for y = 0, the log-stable process,
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px(x, t) = ; (4)

which does not converge to a stationary state, since probability escapes to +oc.

e For y > 0, a stationary state exists and its asymptotics can be computed.

eFor a <1, B =1 (noise positive definite), the origin is always unstable

The nonlinear regime (y > 0)

Typical time seriesa) a=15,=0,b) a=05, =1.0,¢c) a=0.5, B =—1.
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A critical transition only occurs for a > 1. Else, the origin is either always stable/unstable.
The exact asymptotics of px st in steady state are summarised in the table below

5 Px st(x — 0) Px st(x — 00)
—1 C(ux)~ " log=%(1/x) exponential decay
(—1,1) C(ux)~""log~%(1/x) | Cy 'x3log~9(x)
1 ox x~ 1 HAalH) Cy~ 'x3log~%(x)

Numerically integrating (2) confirms asymptotics = predict critical exponents (heuristic)
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Conclusion and Outlook

We have shown that instabilities subject to parametric
heavy-tailed noise, modeled as Lévy white noise, can
display anomalous critical exponents differing from
those for Gaussian noise. Our work serves as a first
step in the study of instabilities in the presence of
multiplicative Levy noise. Many directions can be
further pursued. The exponents of the intermediate
power laws at B < 1 remain unknown. Other top-
ics of interest include truncated Lévy noise, combined
Lévy-Gaussian noise, finite-velocity Lévy walk, differ-
ent nonlinearities, higher dimensions and time statis-
tics. Since Lévy statistics are found in many physical
systems, one may speculate that the anomalous crit-
ical exponents predicted here for instabilities subject
to Lévy noise may be observable experimentally.
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