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• Instabilities arise in many systems at a parameter threshold (e.g. onset of convection,3D instabilities in quasi-2D flows, dynamo instability, sediment transport, etc.)
• Typically, the system is embedded in an uncontrolled noisy environment.
• The fluctuating properties of the environment affect the control parameters of the insta-bility, which leads to parametric (also known as multiplicative) noise.
•Parametric noise close to an instability threshold causes on-off intermittency, switchingaperiodically between a large-amplitude “on” state and a small-amplitude “off” state.
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• The noisy supercritical pitchfork bifurcation gives a minimal example of this behaviour
Ẋ = (µ + f (t))X − γX3, (1)

with mean growth rate µ, nonlinear coefficient γ ≥ 0, and the random noise f (t).

Multiplicative noise and on-off intermittency

• Typically f (t) in (1) is taken to be Gaussian white noise. This is motivated by the CLT:Given N identically distributed RVs X1, . . . , XN with mean 0 and variance σ2, then
SN = (X1 + ...+ XN)/√N N→∞−→ S ∼ N (0, σ2), if and only if1) The Xi are mutually independent, i.e. 〈XiXj〉 = 0 for i 6= j and2) X has finite variance.

•Both assumptions of the CLT may be violated when choosing f (t).1) If noise has finite correlation time ⇒ spectrum at zero frequency important [?].2) If noise has infinite variance ⇒ noise from non-equilibrium source (no temperature)
•Generalised CLT for 2): the scaled sum of the Xi tends to a stable distribution ℘α,β(x),

φα,β(k) = 〈eikx〉 = ∫ ∞
−∞

eikx℘α,β(x)dx = exp{−|k|α (1− iβ tan (απ2 ))} .
• Some simple properties of stable distributions
→ Choosing α = 2 gives Gaussian
→ For ℘α,β(x) ≥ 0 ⇒ 0 < α ≤ 2, −1 ≤ β ≤ 1.
→ For |β| < 1, ℘α,β(x) x→±∞∼ (1 + βsign(x))x−1−α .
→ This breaks down on one side for β = ±1.There, ℘α,β(x) ∝ exp(−cst. x α

α−1)
⇒ one-sided distribution for β = ±1, α < 1. −10 −5 0 5 10
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(Generalised) central limit theorem & stable laws

• For (1) with α-stable white noise (f (t)dt = dt1/αF (t), F (t) α-stable), the PDF of X obeys
∂tpx(x, t) = −∂x [(µx − γx3)px(x, t)] + D α,βx px(x, t), (2)

the (Stratonovich) fractional Fokker-Planck equation, where D α,βx is a linear operator.The variable log(X ) performs a Lévy flight.
• For α = 2 (Gaussian white noise), D α,βx = ∂2

x . There for µ > 0, the stationary PDF is
pst(x) = Nx−1+µe−γ2x2 (3)

Some important properties
→ Critical transition at µ = 0 (deterministic threshold)
→Power law divergence at small x with exponent → −1 as µ → 0, cut-off at large x
→ Anomalous scaling near onset: for all n > 0, 〈Xn〉 ∝ µ as µ → 0
•Goal: extend this result to α < 2.
•Problem: Can only solve (2) analytically for γ = 0, the log-stable process,

px(x, t) = ℘α,β
(log(x)−µt

t1/α
)

xt1/α , (4)
which does not converge to a stationary state, since probability escapes to ±∞.
• For γ > 0, a stationary state exists and its asymptotics can be computed.

The fractional Fokker-Planck equation

The leakage of probability depends on α, β and µ in this case. E.g. for µ > 0, β = 0,

Critical difference: α > 1 (mean of noise finite) and α ≤ 1 (mean of noise infinite)
• For 1 < α < 2: critical transition at µ = 0 from probability accumulating at x = 0(stable origin) or leaking to x =∞ (unstable origin).
• For α = 1, and for α < 1, β < 1, the origin is always stable
• For α < 1, β = 1 (noise positive definite), the origin is always unstable

The linear regime (γ = 0)

Typical time series a) α = 1.5, β = 0, b) α = 0.5, β = 1.0, c) α = 0.5, β = −1.

A critical transition only occurs for α > 1. Else, the origin is either always stable/unstable.The exact asymptotics of px,st in steady state are summarised in the table below
β px,st(x → 0) px,st(x → ∞)
−1 C (µx)−1 log−α(1/x) exponential decay(−1, 1) C (µx)−1 log−α(1/x) Cγ−1x−3 log−α(x)1 ∝ x−1+Aα(µ) Cγ−1x−3 log−α(x)Numerically integrating (2) confirms asymptotics⇒ predict critical exponents (heuristic)
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The nonlinear regime (γ > 0)

We have shown that instabilities subject to parametricheavy-tailed noise, modeled as Lévy white noise, candisplay anomalous critical exponents differing fromthose for Gaussian noise. Our work serves as a firststep in the study of instabilities in the presence ofmultiplicative Levy noise. Many directions can befurther pursued. The exponents of the intermediatepower laws at β < 1 remain unknown. Other top-ics of interest include truncated Lévy noise, combinedLévy-Gaussian noise, finite-velocity Lévy walk, differ-ent nonlinearities, higher dimensions and time statis-tics. Since Lévy statistics are found in many physicalsystems, one may speculate that the anomalous crit-ical exponents predicted here for instabilities subjectto Lévy noise may be observable experimentally.
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Conclusion and Outlook


