- Modeling and interpretation of spectral properties of primeval galaxies RJP – 18 March 2021

JWST

E

formation & evolution of galaxies

Big Bang first galaxies

today

Adèle Plat – University of Arizona

Collaborators : S. Charlot, G. Bruzual, A. Feltre, A. Vidal-García, C. Morisset, J. Chevallard and H. Todt

The Epoch of Reionization

Introduction The Epoch of Reionization

Rate of LyC photons injected into a unit volume of the inter-galactic medium (IGM):

 \circledast 1. What are the main sources of ionizing radiation ?

 \circledast 2. What fraction of this ionizing radiation escapes from the galaxy ?

Introduction The Epoch of Reionization

1. Are hot stars in star-forming galaxies the main sources of reionization?

hot stars

accreting supermassive black hole

The number density of **faint SF galaxies** rises with redshift.

These might have dominated the production of ionizing radiation during the EoR.

Can be assessed by constraining the rate / escape fraction of LyC photons in EoR galaxies.

Active galactic nuclei (AGN) produce a lot of LyC photons. But the number density of AGN drops with increasing redshift. Perhaps not the main sources of reionization, but possible significant contribution from faint AGN.

Introduction The Epoch of Reionization

2. What factors allow LyC photons to escape from a galaxy ?

 \mathfrak{B} Supernova explosions

 \mathfrak{B} Stellar winds

***** Strong ionizing radiation

LyC photons escape through paths of low hydrogen column density.

Constraints on galaxy physical properties from observed spectra

Upcoming observations of rest-frame UV spectra of high-redshift (z>6) galaxies. Radio JWST, ELTs Microwave Infrared Visible Ultraviolet prism X-rays Gamma-rays

How can we trace the sources of reionization through the spectral analysis of primeval galaxies?

Constraints on galaxy physical properties from observed spectra

Incident radiation transfers through the gas.

* Emission-line diagnostics to characterize ionizing source and gas properties.

Properties of primeval galaxies

Production and escape of ionizing photons

Context

Various existing samples of metal-poor star-forming galaxies and LyC leakers

- ➡ target galaxies approaching the properties of primeval galaxies (at any z);
- ▶ typically few lines available per sample;
- ▶ different samples analyzed independently with different models;

Outcome:

- the galaxies tend to exhibit prominent $\ensuremath{\text{CIII}}\xspace$ [(and even $\ensuremath{\text{CIV}}\xspace)$) emission;
- strong nebular HeII emission, which tends to increase toward low metallicities, not reproduced by current stellar models;
- combination of CIV, CIII] and HeII can discriminate between star-forming galaxies, AGN and shocks;
- [OII]/[OIII] and HeI lines as potential diagnostics of *fesc*, but degenerate.

* Need for a homogeneous investigation of a full set of optical/ultraviolet emission-line diagnostics of metal-poor star-forming galaxies with a wide collection of intercomparable models.

> Supersonic motions => radiative shocks

Stars + Interstellar medium (ISM)

> Accreting supermassive black hole => AGN

Stars with effective temperature $\gtrsim 30,000$ K ionize the interiors of their birth clouds \gg HII regions

Star-forming galaxy models computed following the approach of Gutkin+16.

'isochrone-synthesis' technique: star-formation history expanded into a series of simple stellar populations (SSP)

$$L_{\lambda}(t) = \int_{0}^{t} dt' \,\psi(t - t') \,S_{\lambda}(t', Z) \,T_{\lambda}(t, t')$$
Galaxy luminosity Star-formation rate Luminosity of Transmission

at time t

an SSP of age t' of the ISM

Escape of ionizing radiation: density-bounded models

Ionization-bounded model optically thick to LyC photons

Density-bounded model optically thin to LyC photons

Ionization-bounded with holes

In density-bounded models, peeling off the HII region makes:

- ➡ fesc larger;
- ▶ line EWs decrease (except for lines from high ionization species);
- ▶ line ratios of low-to-high ionization species decrease.

Component of AGN narrow-line region: updated version of Feltre+16 models.

▶ higher fraction of high ionization potential species than in HII region.

Component of **radiative shocks**: models from Alarie&Morisset19.

Production and escape of ionizing photons

Observations of metal-poor star-forming galaxies and LyC leakers

Production and escape of ionizing photons Diagnostics of ionizing sources and LyC-photon leakage

* Need a hard ionizing radiation to redroduce the observed line ratios :

➤ more work required to model emission of primeval galaxies.

* Important degeneracy between the ionizing source and gas parameters :

▶ need to use appropriate statistical tools.

New observations will help us understand the Epoch of Reionization.

Backup slides

The production of ionizing radiation by young stellar populations

Main-sequence OB stars:
 Massive stars are hotter than lower-mass ones.
 Metals increase atmosphere opacity, resulting in lower T_{eff}.

Wolf-Rayet (WR) stars:
 Hot massive stars, which have lost their hydrogen envelopes.
 More WR stars at high Z because of higher mass-loss rate caused by line driven winds, but they produce a softer ionizing radiation.

Binary interactions:

Production and escape of ionizing photons

Modeling approach

Emission from an HII region (see Gutkin+16):

❀ Stellar population synthesis codes:

- GALAXEV (Bruzual&Charlot03, 2019 version): single stars
- BPASS (Stanway&Eldridge18, 2019 version): single and binary stars

Stellar parameters :

- metallicity *Z* = 0.0005, 0.002, 0.008 (Z_☉ = 0.01524)
- Chabrier IMF with upper mass cutoff m_{up} = 100, 300 and 600 M_{\odot}

Photoionization code CLOUDY (Ferland+17)

➤ Nebular parameters :

- Interstellar (gas- + dust-phase) metallicity: same as that of the stars
- Hydrogen gas density $n_H = 100$ and 1000 cm⁻³
- Zero-age volume-averaged ionisation parameter log $\langle U \rangle = -3$, -2 and -1
- Dust-to-metal mass ratio $\xi_d = 0.1$ and 0.3
- Carbon to oxygen abundance ratio C/O = 0.17 and 0.44 (solar)

Interstellar-line absorption in stellar birth clouds (HII+HI) using the prescription of Vidal-García+17.

Influence of *fesc* on emission lines:

 $\log{\langle U \rangle}$: increases in order of increasing line thickness / symbol size.

 $\mathbf{V}Z = 0.0005 \mathbf{O}Z = 0.002 \mathbf{I}Z = 0.008$

Second this (and other) line ratio on *fesc.*

Production and escape of ionizing photons Diagnostics of ionizing sources and LyC-photon leakage

 \circledast Degeneracy between the signatures of *fesc* and those of other parameters, such as the nature of the ionizing source, U and Z.

