SURVIVAL New Dia R N Martin Contraction of the second seco -A Ρ R E С Ε Ρ R S The second second F R D

RENCONTRE DES JEUNES PHYSISIEN.N

Fonds National de la Recherche Luxembourg

BENJAMIN DE BRUYNE

WORK DONE IN Collaboration with

Grégory Schehr Laboratoire de Physique Théorique et Hautes Energies.

Satya N. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques.

OUTLINE

Survival probability motivations

Classical results for the Brownian Motion

Recent results on the Run-and-Tumble particle

New results on the Run-and-Tumble particle with drift

Conclusion

SURVIVAL PROBABILITY MOTIVATIONS

[1] Reproduced from Berthelot G, Saïd S & Bansaye V 2020 *bioRxiv.*[2] Bitcoin price in EUR over the last months from Google Finance.

CLASSICAL RESULTS ON **BROWNIAN MOTION**

[1] Bray A J, Majumdar S N & Schehr G 2013 Persistence and first-passage properties in nonequilibrium systems Advances in Physics 62 225-361. [2] Redner S 2001 A guide to first-passage processes Cambridge University Press.

CLASSICAL RESULTS ON **BROWNIAN MOTION**

[1] Bray A J, Majumdar S N & Schehr G 2013 Persistence and first-passage properties in nonequilibrium systems Advances in Physics 62 225-361. [2] Redner S 2001 A guide to first-passage processes Cambridge University Press.

CLASSICAL RESULTS ON **BROWNIAN MOTION**

Constant negative drift - $\dot{x}(t) = \sqrt{2} D \eta(t)$

Brownian motion with a negative drift A drift is added to the white noise.

[1] Bray A J, Majumdar S N & Schehr G 2013 Persistence and first-passage properties in nonequilibrium systems Advances in Physics 62 225-361. [2] Redner S 2001 A guide to first-passage processes Cambridge University Press.

IS EVERYTHING CLEAR?

We will now turn to recent results on the survival probability of the run-and-tumble particle.

(RUN-AND-TUMBLE PARTICLE [1-3]

[1] Furth R 1917 Annals of Physics 53,177.
[2] Kac M 1974 The Rocky Mountain Journal of Mathematics 497-509.
[3] Marchetti M et al 2013 Reviews of Modern Physics 1143.

Figure from https://opentextbc.ca/microbiologyopenstax/chapter/unique-characteristics-of-prokaryotic-cells./

RECENT RESULTS ON THE RUN-AND-TUMBLE PARTICLE

[1] Malakar K et al 2018 Journal of Statistical Mechanics: Theory and Experiment 4 043215. [2] Mori F, Le Doussal P, Majumdar S N & Schehr G 2020 Physical review letters 124 090603.

NEW RESULTS ON THE RUN-AND-TUMBLE PARTICLE WITH DRIFT

CONCLUSION

Survival probability of a run-and-tumble particle in the presence of a drift Simple model that encapsulate 3 levels of difficulty:

- Non-Markovian,
- Drift,
- Survival probability.

Exactly solvable model

The model is exactly solvable and has an unexpected rich phase diagram. The model will serve as a benchmark for more realistic models of the runand-tumble particle.

Next steps

The model discussed here is at single-particle level. It would be very interesting to study a multi-particle system with interactions.

THANK YOU FOR YOUR ATTENTION.

RENCONTRE DES JEUNES PHYSISIEN.NE.S 2021

BENJAMIN DE BRUYNE (LPTMS)

