

Nuclear structure and α radioactivity

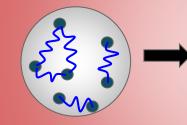
PhyNet

Florian MERCIER

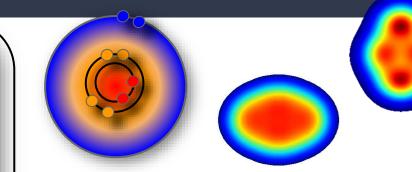
I. The nuclear many body problemII. Building an interactionIII. Many body interacting problemIV. Alpha and cluster radioactivity

Tackling the nuclear many body problem

Quantum many body interacting problem !

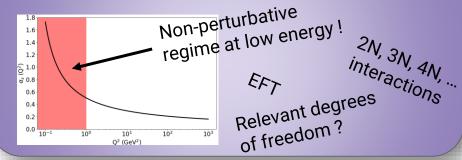


Many (strongly) interacting particles but not enough for statistical approximation TOOOOO hard to be solved exactly

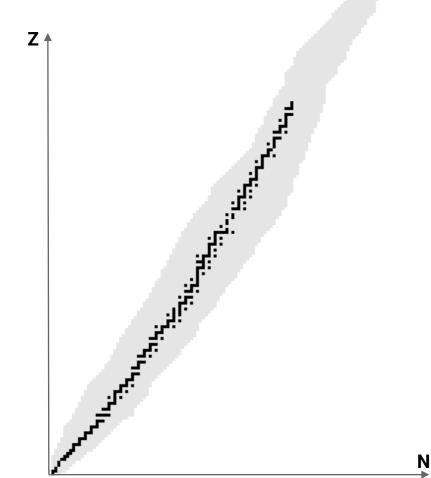


Huge phenomenology ! Many emerging properties : deformation, radioactivity, halo, neutron skin, superfluidity, clustering, excitations, ...

Interaction coming from (non-perturbative) QCD !



Nuclear landscape



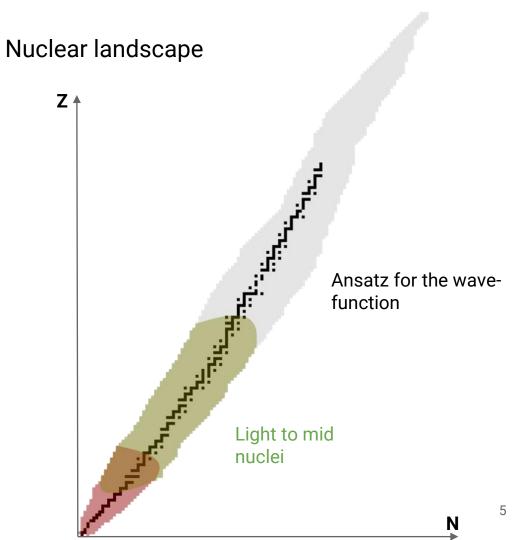
3

Nuclear landscape Z 🛉 Starts from NN, NNN, ... interaction بن بن بلا بر بر Huge size of Hilbert space! Light nuclei

Ν

• Ab Initio

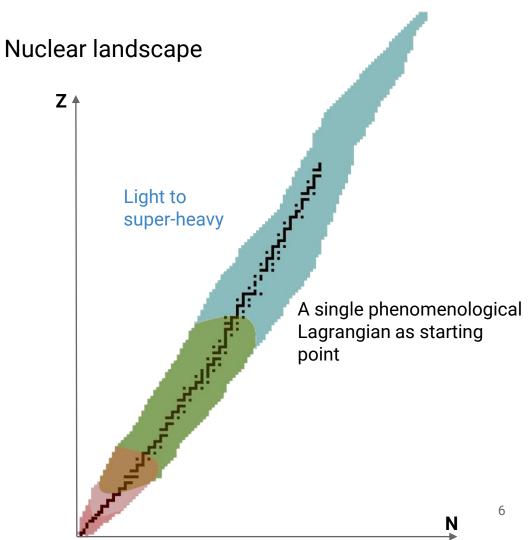
Configuration interaction



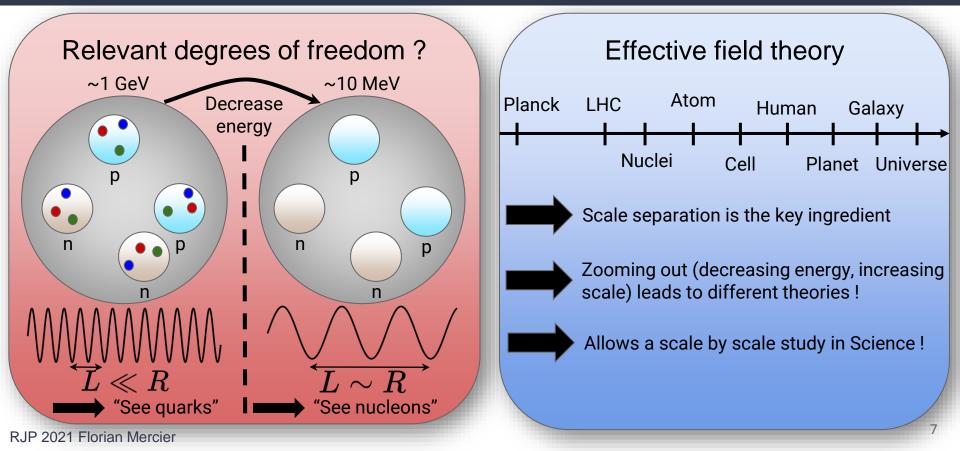
• Ab Initio

Configuration interaction

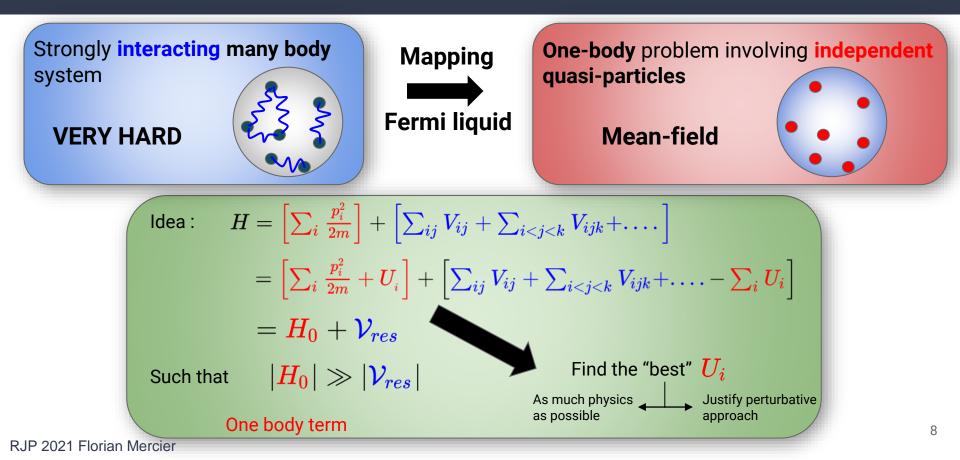
• Energy density functional



Building an interaction : what is the idea ?



Many body interacting problem



Hartree–Fock theory

Symmetries

 $H=H_0+\mathcal{V}_{res}~~$ with a certain $~~U_i$

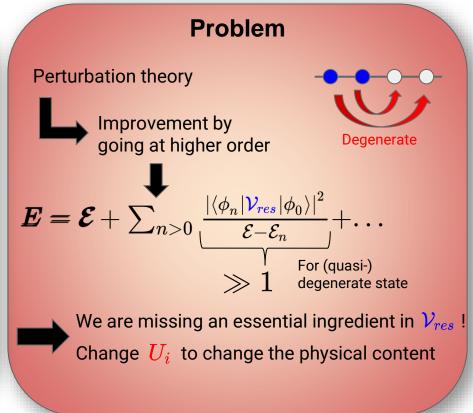
We know that the Hamiltonian *H* possesses some symmetries

 $\left[H,N
ight] =0$ Particle number conservation

 $\left[H,J
ight] =0$ Invariance under rotation

Let us choose the same symmetries for H_0

$$[{oldsymbol H}_0,N]=0 \hspace{0.5cm} [{oldsymbol H}_0,J]=0$$



How to raise degeneracies ?

▲

The isotropic (symmetric) harmonic oscillator

$$egin{aligned} E_n^{sym} &= \hbar\omega(n_x+n_y+n_z+3/2) \ &= \hbar\omega(n+3/2) \end{aligned}$$

The anisotropic (asymmetric) harmonic oscillator

$$egin{aligned} E^{asym}_{n_xn_yn_z} &= \hbar(\omega_xn_x+1/2)+\hbar(\omega_yn_y+1/2)\ &+\hbar(\omega_zn_z+1/2) \end{aligned}$$

$$n = 3$$
 $\left\{egin{array}{cccc} 3,0,0\ 2,1,0\ 2,0,1\ 1,1,1\ 1,1,1\ 0,3,0\ \bullet&ull$

RJP 2021 Florian Mercier

Breaking symmetries seems to raise degeneracies !! ¹⁰

Hartree-Fock-Bogoliubov theory

Symmetries

 $H=H_0+\mathcal{V}_{res}~~$ with a certain $~~U_i$

We know that the Hamiltonian *H* possesses some symmetries

 $\left[H,N
ight] =0$ Particle number conservation

 $\left[H,J
ight] =0$ Invariance under rotation

Let us choose the same symmetries for H_0

$$\left[oldsymbol{H_0},N
ight] = 0 \quad \left[oldsymbol{H_0},J
ight] = 0$$

Problem Solution

Assume $\left[rac{H_0'}{0},N
ight]
eq 0$

Particle number not conserved anymore !

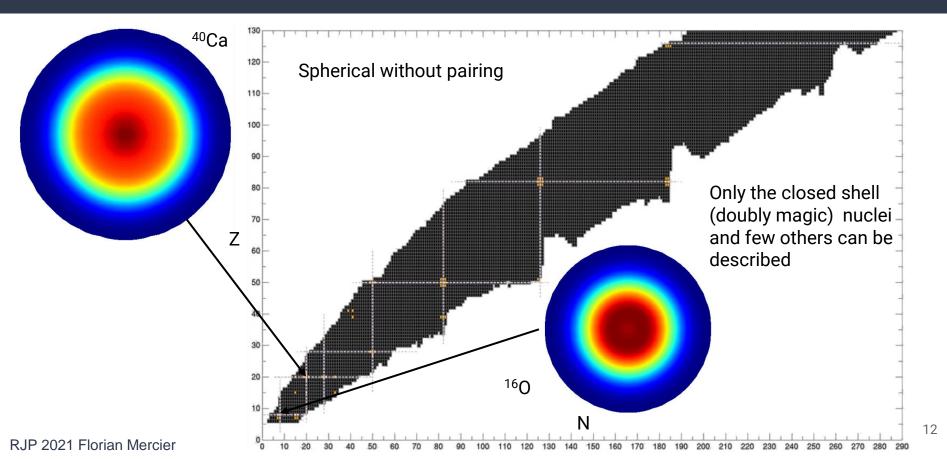
Particles can create pairs which behave as single degree of freedom

As for spin pairing, it leads to a splitting of the energy and a new minimum energy configuration !

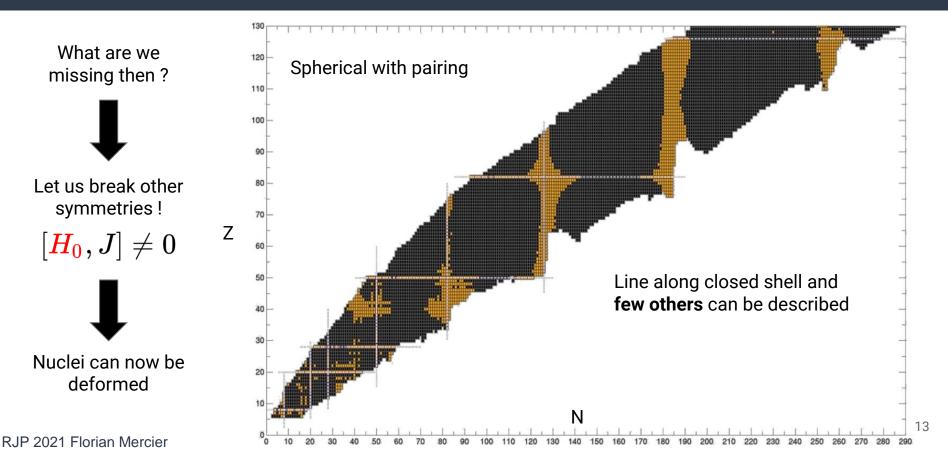
 $E = \epsilon \pm \Delta$

Non degenerate anymore !

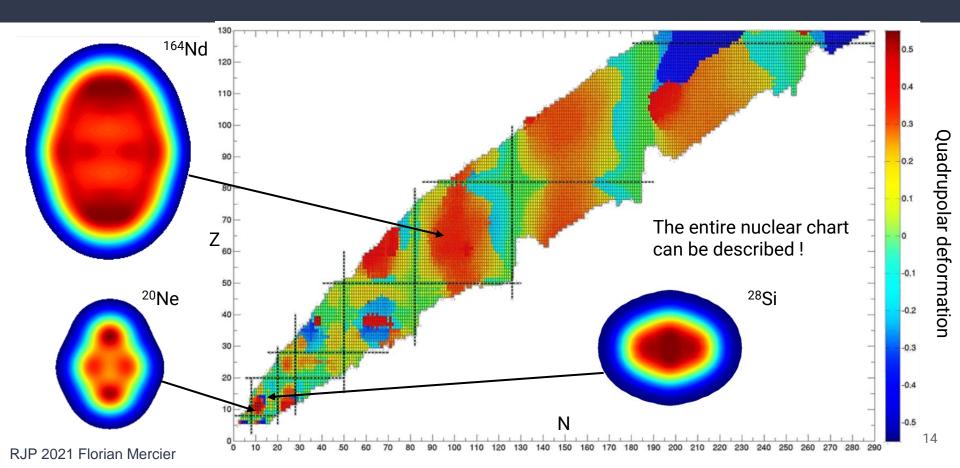
Impact of symmetry breaking : no breaking



Impact of symmetry breaking : U(1) breaking



Impact of symmetry breaking : U(1) and SO(3)

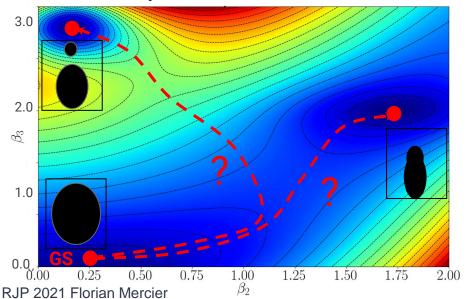


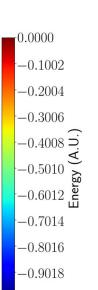
Deformations and Potential Energy Surface

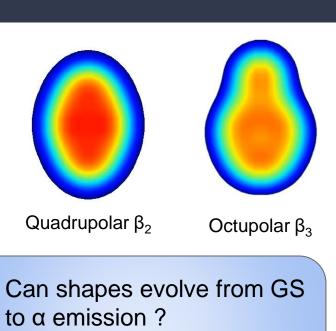
Impose the deformation in quadrupolar/octupolar shapes and compute *E*

It will give $~E(eta_2,eta_3)\geq E_{\min}$

Example of what could be a PES



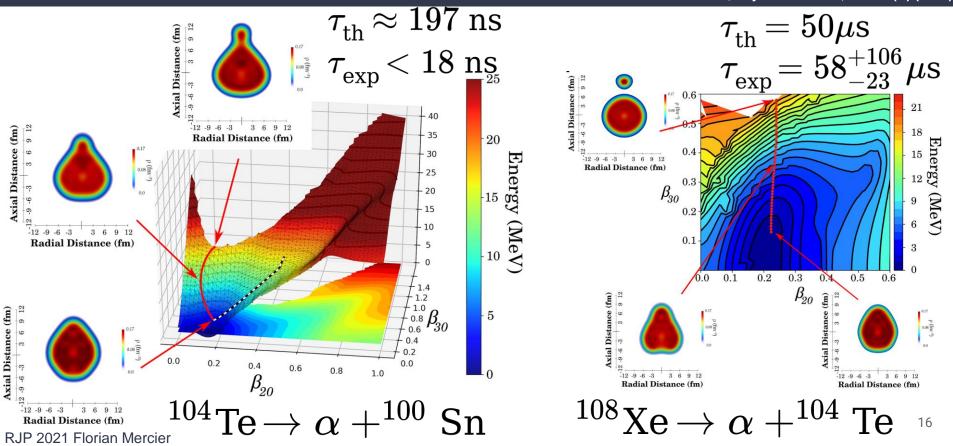




 Is it possible to compute the associated probability ?

Alpha decay chain $^{108} ext{Xe} \rightarrow ^{104} ext{Te} \rightarrow ^{100} ext{Sn}$

F. Mercier and al., Phys. Rev. C 102, 011301(R) (2020)



Other results for heavier nuclei

