

Laboratoire Univers et Théories

Investigating dense matter using Neutron Star observations

LAMI SULEIMAN

Rencontres Jeunes Physiciens 16th March 2021

Supernova Remnant of Puppis A observed by ROSAT X-ray Observatory **Credits : Nasa website**

> Focus on Cold Neutron Stars Proto-NS

Compact objects:

- Mass $\sim M_{\odot}$
- Radius ~ 10kms

High magnetic field: pulsars

Credits: NASA website

Compact objects:

- Mass $\sim M_{\odot}$
- Radius ~ 10kms

High magnetic field: pulsars

Structure:

• Envelope: light elements

Compact objects:

- Mass $\sim M_{\odot}$
- Radius ~ 10kms

High magnetic field: pulsars

Structure:

- Envelope: light elements
- Crust: lattice
 - > Outer crust
 - Inner crust: free neutrons

Compact objects:

- Mass $\sim M_{\odot}$
- Radius ~ 10kms

High magnetic field: pulsars

Structure:

- Envelope: light elements
- Crust: lattice
 - Outer crust
 - Inner crust: free neutrons
- Core: homogeneous matter
 - Outer core : npeµ gas
 - Inner core : ???

Compact objects:

- Mass $\sim M_{\odot}$
- Radius ~ 10kms

High magnetic field: pulsars

Structure:

- Envelope: light elements
- Crust: lattice
 - Outer crust
 - Inner crust: free neutrons
- Core: homogeneous matter
 - > Outer core : $npe\mu$ gas
 - Inner core : ???

How is their interior described ?

Equation of State

 $P(\rho)$ + composition = nuclear model of NS interior

Compact objects:

- Mass $\sim M_{\odot}$
- Radius ~ 10kms

High magnetic field: pulsars

Structure:

- Envelope: light elements
- Crust: lattice
 - > Outer crust
 - Inner crust: free neutrons
- Core: homogeneous matter
 - > Outer core : $npe\mu$ gas
 - Inner core : ???

How is their interior described ?

 $\frac{\text{Equation of State}}{P(\rho)} + \text{composition} = \text{nuclear model of NS interior}$ $\text{Laboratories} \rightarrow 3n_0$

Inner core $\rightarrow 15n_0$

Compact objects:

- Mass $\sim M_{\odot}$
- Radius ~ 10kms

High magnetic field: pulsars

Structure:

- Envelope: light elements
- Crust: lattice
 - Outer crust
 - Inner crust: free neutrons
- Core: homogeneous matter
 - > Outer core : $npe\mu$ gas
 - Inner core : ???

How is their interior described ?

Equation of State

 $P(\rho)$ + composition = nuclear model of NS interior

Laboratories $\rightarrow 3n_0$

Inner core $\rightarrow 15n_0$

Mysterious core composition:

- Hyperons ?
- Quark matter ?
- Etc.

Compact objects:

- Mass $\sim M_{\odot}$
- Radius ~ 10kms

High magnetic field: pulsars

Structure:

- Envelope: light elements
- Crust: lattice
 - Outer crust
 - Inner crust: free neutrons
- Core: homogeneous matter
 - ➢ Outer core : npeµ gas
 - Inner core : ???

How is their interior described ?

Equation of State

 $P(\rho)$ + composition = nuclear model of NS interior

Laboratories $\rightarrow 3n_0$

Inner core $\rightarrow 15n_0$

Mysterious core composition:

- Hyperons ?
- Quark matter ?
- Etc.

Various calculation techniques:

- Microscopic: *ab-initio*
- Phenomenologic: Skyrme, RMF...

Compact objects:

- Mass $\sim M_{\odot}$
- Radius ~ 10kms

High magnetic field: pulsars

Structure:

- Envelope: light elements
- Crust: lattice
 - Outer crust
 - Inner crust: free neutrons
- Core: homogeneous matter
 - ➢ Outer core : npeµ gas
 - Inner core : ???

How is their interior described ?

Equation of State

 $P(\rho)$ + composition = nuclear model of NS interior

Laboratories $\rightarrow 3n_0$

Inner core $\rightarrow 15n_0$

Mysterious core composition:

- Hyperons ?
- Quark matter ?
- Etc.

Various calculation techniques:

- Microscopic: *ab-initio*
- Phenomenologic: Skyrme, RMF...

So many EoS !!

Modelisation of macroscopic parameters

Input : $P(\rho)$ Output : M, R, A, I

$$\frac{dP}{dr} = -\frac{Gm(r)}{r^2} \left(1 + \frac{P}{\rho(r)c^2}\right) \left(1 + \frac{4\pi r^3 P}{m(r)c^2}\right) \left(1 - \frac{2Gm(r)}{rc^2}\right)^{-1}$$

Modelisation of macroscopic parameters

Input : $P(\rho)$ Output : M, R, A, I

• Total mass M

<u>Modelisation of macroscopic parameters</u> Input : $P(\rho)$ Output : M, R, A, I

 Total mass M Maximum mass requirement

<u>Modelisation of macroscopic parameters</u> Input : $P(\rho)$ Output : M, R, A, I

- Total mass M Maximum mass requirement
- Total radius R
 - \rightarrow NICER telescope

<u>Modelisation of macroscopic parameters</u> Input : $P(\rho)$ Output : M, R, A, I

- Total mass M Maximum mass requirement
- Total radius R
 - \rightarrow NICER telescope
- Tidal deformability Λ

ightarrow → GW170817

Modelisation of macroscopic parameters Input : $P(\rho)$ Output : M, R, A, I

- Total mass M
 Maximum mass requirement
- Total radius R
 - \rightarrow NICER telescope
- Tidal deformability Λ
 - ightarrow → GW170817
- Moment of inertia I

 $\succ \rightarrow \bigotimes$

Equation of state:

Core \rightarrow easy to compute

 $Crust \rightarrow lattice = complicated$

Equation of state:

Core \rightarrow easy to compute

Crust \rightarrow lattice = complicated

Usual practice: glue core to crust EoS What's the problem:

Bind anyway they want ...

$$n_B=0.1$$
 , 0.11 , $0.16\ fm^{-3}$

Equation of state:

Core \rightarrow easy to compute Crust \rightarrow lattice = complicated

Usual practice: glue core to crust EoS What's the problem:

Bind anyway they want ...

 $n_B=0.1$, 0.11 , $0.16\,fm^{-3}$

<u>Consequences on macroscopic</u> <u>parameters:</u>

• M, R, Λ , I \rightarrow glued models = artificial uncertainties

Equation of state:

Core \rightarrow easy to compute Crust \rightarrow lattice = complicated

<u>Consequences on macroscopic</u> <u>parameters:</u>

- M, R, Λ , I \rightarrow glued models = artificial uncertainties
- \rightarrow GW170817

Usual practice: glue core to crust EoS What's the problem:

Bind anyway they want ...

$$n_B=0.1$$
 , 0.11 , $0.16~fm^{-3}$

Equation of state:

Core \rightarrow easy to compute Crust \rightarrow lattice = complicated

<u>Consequences on macroscopic</u> <u>parameters:</u>

- M, R, Λ , I \rightarrow glued models = artificial uncertainties
- \rightarrow GW170817
- « Universal » relations + fits

$$C = \frac{GM}{Rc^2} = \sum_{k=0}^{2} a_k (\ln \Lambda)^k$$

 \odot Need to be reevaluated...

Usual practice: glue core to crust EoS What's the problem:

Bind anyway they want ...

$$n_B=0.1$$
 , 0.11 , $0.16\,fm^{-3}$

• Neutron stars are extraterrestrial laboratories for dense matter

- Neutron stars are extraterrestrial laboratories for dense matter
- Careful treatment of the core-crust binding density ! Use unified EoS !

- Neutron stars are extraterrestrial laboratories for dense matter
- Careful treatment of the core-crust binding density ! Use unified EoS !
- Impatiently waiting for radius and tidal deformability measurements

- Neutron stars are extraterrestrial laboratories for dense matter
- Careful treatment of the core-crust binding density ! Use unified EoS !
- Impatiently waiting for radius and tidal deformability measurements

Thank you for your attention ! Questions ?