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How to build a neuron with salty water?
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Man versus machine: a two-sided game

AlphaGo vs Lee Sedol (2016)

VS

4 – 1

Von Neumann architecture

Electrons

Highly parallel

Ions with different “flavors”
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1920 CPUs, 280 GPUs ∼ 1 MW
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Von Neumann architecture

Electrons

1 brain ∼ 20 W
2 bananas/day

Highly parallel

Ions with different “flavors”

Can we build a nanofluidic computer?
(or at least building blocks)
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A key nanofluidic device: the angstrometric slit

Electrolyte confined to molecular level between two sheets

0.7 nm

Effects of molecular nature of
water/ions?

No clear theoretical framework

Radha et al., Nature (2016); Esfandiar et al., Science (2017); Mouterde et
al., Nature (2019)
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How do ions behave in extreme confinement?

Confinement of interactions

Bulk water

‘2D+’ confined water, ξ ∼ 14 nm

h

(anisotropic permittivity, Fumagalli et al.,
Science 2018)

V3D =
q

4πε0εr r

� V2D+ = − q

4πε0εrξ
log

r

r + ξ

Confinement also impacts interactions
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Reinforced interactions in confinement: Bjerrum pairs

MD simulation of NaCl in 2D
monolayer water

Bjerrum pairs

Normally only observed in weak
electrolytes
First predicted in 1D confinement
(Kavokine et al., Nature Nano.,
2019)

Confinement makes water a poor
solvent
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Reinforced interactions in confinement: Bjerrum pairs

Strengh of interactions parameter:

T ∗ ∼ kBT
4πεεrξ
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Why are pairs interesting?

Wien effect (Onsager, 1934):
Pairs are neutral, do not conduct, but break under a strong voltage

Voltage-gated ion channels
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1− nf
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−
n2f
τa

= 0

I ∝ nf E

τd ∝ E 1/T∗

(self-similarity argument)

Onsager’s Wien effect fails!
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The problem with Wien effect: Bjerrum polyelectrolytes

Onsager’s picture:

E >> E0

I>0

I=0

E << E0

ṅf =
1− nf
τd(E )

−
n2f
τa

= 0

τd ∝ E 1/T∗
NaCl, E = 0
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The problem with Wien effect: Bjerrum polyelectrolytes

Polyelectrolytic Wien (PEW) effect:
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Conduction memory: memristor effect
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I = gn4∆V
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τ1(∆V )
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n: ’activity’ of the channel
(Hogdkin and Huxley, 1952)

also a memristor!
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Can we replicate what Nature does with ion channels?

Hodgkin-Huxley neuron model

Memristor
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Can we replicate what Nature does with ion channels?

Prototype nanofluidic neuron
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Fully simulated with molecular
dynamics:
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(Two coupled simulation boxes)

Action potential train

9 / 11



Spiking mechanism

0.1 ms

0.1kBT/e/Å
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Conclusion

Ion clusters under confinement

2D electrolytes = voltage-gated ion channels

Memristor: building block for ionic computing

Take-home message

Confinement also impacts interactions

Large structures ⇔ Long correlation times ⇔ Memory

Experimentally accessible!

...Dynamical nanofluidics is worth the journey!

Ref.: P. Robin, N. Kavokine, L. Bocquet, Science, in revision.
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