Theoretical prototype of a Hodgkin-Huxley neuron with

2D nanofluidic memristors
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@ Von Neumann architecture @ Highly parallel
@ Electrons @ lons with different “flavors”

Can we build a nanofluidic computer?
(or at least building blocks)



A key nanofluidic device: the angstrometric slit

Electrolyte confined to molecular level between two sheets

Ag/AgCl electrode

membrane
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Effects of molecular nature of
water /ions?
No clear theoretical framework

Radha et al., Nature (2016); Esfandiar et al., Science (2017); Mouterde et
al., Nature (2019)



How do ions behave in extreme confinement?

Confinement of interactions

Bulk water
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How do ions behave in extreme confinement?

Confinement of interactions

Bulk water ‘2D confined water, £ ~ 14 nm

N4 B

(anisotropic permittivity, Fumagalli et al.,
Science 2018)
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Confinement also impacts interactions



Reinforced interactions in confinement: Bjerrum pairs
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Reinforced interactions in confinement: Bjerrum pairs

Strengh of interactions parameter:

Bjerrum pairs
4ree, & ! P

q? Normally only observed in weak
electrolytes

First predicted in 1D confinement
(Kavokine et al., Nature Nano.,
2019)

T~ kgT

2D Coulomb gas
= == = Quasi 2D Coulomb gas

Unpaired

Confinement makes water a poor
solvent

10° 105 10* 107
Concentration (atom/A2)

Numerical /Analytical phase diagram
Kosterlitz—Thouless transition



Why are pairs interesting?

Wien effect (Onsager, 1934):
Pairs are neutral, do not conduct, but break under a strong voltage
Voltage-gated ion channels
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Why are pairs interesting?

Wien effect (Onsager, 1934):
Pairs are neutral, do not conduct, but break under a strong voltage
Voltage-gated ion channels
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Why are pairs interesting?

Wien effect (Onsager, 1934):
Pairs are neutral, do not conduct, but break under a strong voltage
Voltage-gated ion channels
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Onsager’s Wien effect fails!



The problem with Wien effect: Bjerrum polyelectrolytes

Onsager's picture:
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The problem with Wien effect: Bjerrum polyelectrolytes

Onsager's picture:

NaCl, E >0
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The problem with Wien effect: Bjerrum polyelectrolytes

Polyelectrolytic Wien (PEW) effect:

—— PEW effect

% Brownian dynamics
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Isolated pair model

o

(nA)

0-0-o
Current
nN w

| ~ Ef+14T
E
- = 1 | ~ E1+12T
0
. 1-— ng n? 0 0.1 0.2 0.3 0.4 0.5
ng = - — = 0 Electric field (kBT/e/A)
Td(E) Ta

MD simulations vs theory
(no fitting parameter)



Conduction memory: memristor effect

Conductivity

0

PEW effect:
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Conduction memory: memristor effect

Conductivity

0

PEW effect:
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ns: % of ions in polyelectrolytes

Memristor

Conductivity
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K™ ion channel: e
| = gn*AV
h 1—n n
o Tl(AV) TQ(AV)

n: 'activity’ of the channel
(Hogdkin and Huxley, 1952)

also a memristor!



Can we replicate what Nature does with ion channels?

Inside

Memristive—"

Hodgkin-Huxley neuron model

ion channels

Hodgkin-Huxley model (Nobel 1963)
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Action potential train (Wikipedia)



Can we replicate what Nature does with ion channels?

Prototype nanofluidic neuron

| Fully simulated with molecular
© dynamics:

Yo 0.1k T/erA

N

Nernst potential

- 0.1ms

Nanofluidic neuron Action potential train
(Two coupled simulation boxes)
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Spiking mechanism
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Conclusion

@ lon clusters under confinement
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Conclusion

@ lon clusters under confinement
@ 2D electrolytes = voltage-gated ion channels

@ Memiristor: building block for ionic computing

Take-home message

@ Confinement also impacts interactions
o Large structures < Long correlation times < Memory

o Experimentally accessible!

...Dynamical nanofluidics is worth the journey!
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