Theoretical prototype of a Hodgkin-Huxley neuron with 2D nanofluidic memristors

How to build a neuron with salty water?

Paul Robin, Nikita Kavokine, Lydéric Bocquet Micromégas, Ecole Normale Supérieure, Paris

AlphaGo vs Lee Sedol (2016)

VS

AlphaGo vs Lee Sedol (2016)

AlphaGo vs Lee Sedol (2016)

Why?

AlphaGo vs Lee Sedol (2016)

VS

1920 CPUs, 280 GPUs $\sim 1 \, \text{MW}$ 10⁶ bananas/day

• Von Neumann architecture

 $1 ext{ brain} \sim 20 ext{ W}$ 2 ext{ bananas/day}

1

Highly parallel

AlphaGo vs Lee Sedol (2016)

VS

1920 CPUs, 280 GPUs $\sim 1\,\text{MW}$ $$10^6\ \text{bananas/day}$$

4

- Von Neumann architecture
- Electrons

 $1 ext{ brain} \sim 20 ext{ W}$ 2 ext{ bananas/day}

1

- Highly parallel
- Ions with different "flavors"

AlphaGo vs Lee Sedol (2016)

VS

1920 CPUs, 280 GPUs $\sim 1\,\text{MW}$ $$10^6$\ bananas/day$

4

- Von Neumann architecture
- Electrons

 $1 ext{ brain} \sim 20 ext{ W}$ $2 ext{ bananas/day}$

1

- Highly parallel
- lons with different "flavors"

Can we build a nanofluidic computer? (or at least building blocks)

A key nanofluidic device: the angstrometric slit

Electrolyte confined to molecular level between two sheets

Effects of molecular nature of water/ions? No clear theoretical framework

Radha *et al.*, Nature (2016); Esfandiar *et al.*, Science (2017); Mouterde *et al.*, Nature (2019)

How do ions behave in extreme confinement?

Confinement of interactions

Bulk water

$$V_{3D} = \frac{q}{4\pi\epsilon_0\epsilon_r r}$$

How do ions behave in extreme confinement?

Confinement of interactions

Bulk water

'2D⁺' confined water, $\xi \sim 14$ nm

How do ions behave in extreme confinement?

Confinement of interactions

Bulk water

Confinement also impacts interactions

MD simulation of NaCl in 2D monolayer water

Bjerrum pairs

Normally only observed in **weak electrolytes** First predicted in 1D confinement

(Kavokine *et al.*, Nature Nano., 2019)

Confinement makes water a poor solvent

Strengh of interactions parameter:

Bjerrum pairs

Normally only observed in **weak** electrolytes First predicted in 1D confinement

(Kavokine *et al.*, Nature Nano., 2019)

Confinement makes water a poor solvent

Numerical/Analytical phase diagram Kosterlitz–Thouless transition

Why are pairs interesting?

Wien effect (Onsager, 1934):

Pairs are neutral, do not conduct, but break under a strong voltage **Voltage-gated ion channels**

Artificial ion channels

Why are pairs interesting?

Wien effect (Onsager, 1934):

Pairs are neutral, do not conduct, but break under a strong voltage Voltage-gated ion channels

2D Wien effect: A fraction n_f of ions is "free":

$$\dot{n}_f = \frac{1 - n_f}{\tau_d(E)} - \frac{n_f^2}{\tau_a} = 0$$
$$I \propto n_f E$$
$$\tau_d \propto E^{1/T^*}$$

(self-similarity argument)

Why are pairs interesting?

Wien effect (Onsager, 1934):

Pairs are neutral, do not conduct, but break under a strong voltage Voltage-gated ion channels

2D Wien effect: A fraction n_f of ions is "free":

$$\dot{n}_f = \frac{1 - n_f}{\tau_d(E)} - \frac{n_f^2}{\tau_a} = 0$$
$$I \propto n_f E$$
$$\tau_d \propto E^{1/T^*}$$

(self-similarity argument)

Onsager's Wien effect fails!

The problem with Wien effect: Bjerrum polyelectrolytes

Onsager's picture:

$$\dot{n}_f = \frac{1 - n_f}{\tau_d(E)} - \frac{n_f^2}{\tau_a} = 0$$
$$\tau_d \propto E^{1/T^*}$$

NaCl, E = 0

The problem with Wien effect: Bjerrum polyelectrolytes

Onsager's picture:

$$\dot{n}_f = \frac{1 - n_f}{\tau_d(E)} - \frac{n_f^2}{\tau_a} = 0$$
$$\tau_d \propto E^{1/T^*}$$

NaCl, E > 0

The problem with Wien effect: Bjerrum polyelectrolytes

Polyelectrolytic Wien (PEW) effect:

CaSO₄, E > 0

Polyelectrolytic Wien (PEW) effect:

MD simulations vs theory (no fitting parameter)

Conduction memory: memristor effect

$$I \propto n_f E$$

$$\dot{n}_f = \frac{1 - n_f}{\tau_a(E)} - \frac{1}{\tau_d} n_f^2$$

 n_f : % of ions in polyelectrolytes

Memristor

 $\textbf{Pinched} \Rightarrow \textbf{memristor}$

Conduction memory: memristor effect

$$I \propto n_f E$$

$$\dot{n}_f = \frac{1 - n_f}{\tau_a(E)} - \frac{1}{\tau_d} n_f^2$$

 n_f : % of ions in polyelectrolytes

Memristor

$$h = gh \Delta V$$

$$h = \frac{1 - n}{\tau_1(\Delta V)} - \frac{n}{\tau_2(\Delta V)}$$

---4 ^ 1/

n: 'activity' of the channel (Hogdkin and Huxley, 1952)

ı

r

also a memristor!

Can we replicate what Nature does with ion channels?

Hodgkin-Huxley neuron model

Hodgkin-Huxley model (Nobel 1963)

Action potential train (Wikipedia)

Can we replicate what Nature does with ion channels?

Prototype nanofluidic neuron

Nanofluidic neuron (Two coupled simulation boxes) Action potential train

• Ion clusters under confinement

- Ion clusters under confinement
- 2D electrolytes = voltage-gated ion channels

- Ion clusters under confinement
- 2D electrolytes = voltage-gated ion channels
- Memristor: building block for ionic computing

- Ion clusters under confinement
- 2D electrolytes = voltage-gated ion channels
- Memristor: building block for ionic computing

Take-home message

- Ion clusters under confinement
- 2D electrolytes = voltage-gated ion channels
- Memristor: building block for ionic computing

Take-home message

• Confinement also impacts interactions

- Ion clusters under confinement
- 2D electrolytes = voltage-gated ion channels
- Memristor: building block for ionic computing

Take-home message

• Large structures \Leftrightarrow Long correlation times \Leftrightarrow Memory

Ref.: P. Robin, N. Kavokine, L. Bocquet, Science, in revision.

11 / 11

- Ion clusters under confinement
- 2D electrolytes = voltage-gated ion channels
- Memristor: building block for ionic computing

Take-home message

- Confinement also impacts interactions
- Large structures \Leftrightarrow Long correlation times \Leftrightarrow Memory
- Experimentally accessible!

...Dynamical nanofluidics is worth the journey!