$t\bar{t}$ Spin Correlations in the di-leptons channel using Run 2 data & EFT interpretation

Tnourji abdellah Romain Madar

Date : 18/03/2021

Spin Observables Effective field theory interpretation

Why Top quark is so special ?

M Top is an ideal quark for spin measurements :

- decays before it can form bound states
- spin information transferred to daughter particles
- expect top spin observables to be well predicted by perturbative QCD

lifetime <
$$QCD$$

timescale \ll spin-
timescale 10^{-25} s < 10^{-24} s \ll 10^{-2}

Why Top quark is so special ?

M Top is an ideal quark for spin measurements :

- decays before it can form bound states
- spin information transferred to daughter particles
- expect top spin observables to be well predicted by perturbative QCD
- \mathbf{M} In the SM, top quarks production is \sim unpolarised

lifetime <
$$QCD$$
 \ll spin-timescale < 10^{-25} s < 10^{-24} s \ll 10^{-24}

Why Top quark is so special ?

- **M** Top is an ideal quark for spin measurements :
 - decays before it can form bound states
 - spin information transferred to daughter particles
 - expect top spin observables to be well predicted by perturbative QCD
- \mathbf{M} In the SM, top quarks production is \sim unpolarised
- Top spin measurements are a powerful probe of new physics in $t\overline{t}$ production :
 - new mediator would change spin structure

 - sensitive to many dim-6 EFT operators

lifetime <
$$QCD$$
 \ll spin-
timescale < 10^{-25} s < 10^{-24} s \ll 10^{-2}

Top quarks pair decay mode

☑ All - hadronic

- Largest BR
- Largest QCD background
- Event fully constrained

Semi - leptonic

- Hight BR
- Medium background
- Event constrained

Spin Observables

Probing the spin observables :

The dominant effect of the spin correlations is to correlate $\mathbf{\overline{\mathbf{M}}}$ the angles of the decay products between the top quark and anti-top quark :

 $\frac{1}{\sigma} \frac{d^2 \sigma}{d\cos(\theta^a_+)d\cos(\theta^b_-)} = \frac{1}{4} (1 + \frac{B^a_+}{2}\cos(\theta^a_+) + \frac{B^b_-}{2}\cos(\theta^b_-) - \frac{C(a,b)\cos(\theta^a_+)\cos(\theta^b_-)}{1 + \frac{B^a_+}{2}\cos(\theta^b_+) + \frac{B^b_-}{2}\cos(\theta^b_-) - \frac{C(a,b)\cos(\theta^a_+)\cos(\theta^b_-)}{1 + \frac{B^a_+}{2}\cos(\theta^b_-) + \frac{B^b_-}{2}\cos(\theta^b_-) - \frac{C(a,b)\cos(\theta^a_+)\cos(\theta^b_-)}{1 + \frac{B^a_+}{2}\cos(\theta^b_-) + \frac{B^b_-}{2}\cos(\theta^b_-) - \frac{B^b_-}{2}\cos(\theta^b_-)$

The subscript +(-) refers to the top (anti-top) quark

Probing the spin observables :

The dominant effect of the spin correlations is to correlate the angles of the decay products between the top quark and anti-top quark :

 $\frac{1}{\sigma} \frac{d^2 \sigma}{d\cos(\theta^a_+) d\cos(\theta^b_-)} = \frac{1}{4} (1 + \frac{B^a_+}{2} \cos(\theta^a_+) + \frac{B^b_-}{2} \cos(\theta^b_-) - \frac{C(a, b)}{C(a, b)} \cos(\theta^a_+) \cos(\theta^b_-))$

- \boxtimes B^a_+, B^b_- and C(a,b) are the polarisation and spin correction in quantisation axis a and b where a, b = $(\hat{k}, \hat{n}, \hat{r})$.
 - \leq C(a,b) = -9 < cos(θ_a^+)cos(θ_b^-) > ==> 9 correlations
 - $\boxtimes B^a = 3 < \cos(\theta^a) > = 6$ polarisations

The subscript +(-) refers to the top (anti-top) quark

Probing the spin observables :

The dominant effect of the spin correlations is to correlate $\mathbf{\overline{\mathbf{M}}}$ the angles of the decay products between the top quark and anti-top quark :

 $\frac{1}{\sigma} \frac{d^2 \sigma}{d\cos(\theta^a_+) d\cos(\theta^b_-)} = \frac{1}{4} (1 + B^a_+ \cos(\theta^a_+) + B^b_- \cos(\theta^b_-) - C(a, b)\cos(\theta^a_+)\cos(\theta^b_-))$

- \boxtimes B_{+}^{a}, B_{-}^{b} and C(a,b) are the polarisation and spin correction in quantisation axis a and b where a, b = $(\hat{k}, \hat{n}, \hat{r})$.
 - \checkmark C(a,b) = -9 < $\cos(\theta_a^+)\cos(\theta_b^-)$ > ==> 9 correlations

$$\mathbf{M} = \mathbf{3} < \cos(\theta^a) > = \mathbf{3} < \mathbf{0}$$

these 15 coefficients completely characterise spin dependence of *tt* production and can be measured experimentally.

The subscript +(-) refers to the top (anti-top) quark

Spin Correlations : C(k,k)

\mathbf{V} Distributions for the correlation of top spins along k axis (probing diagonal of C(a, b)) b) matrix) : C (k, k) = -9 < $\cos(\theta_k^+)\cos(\theta_k^-) >$

Spin correlations along each axis consistent with SM expectations (NLO from 1508.05271)

SM NLO : C(k, k) = 0.366313 + / - 0.0042(stat)

SM LO : C(k, k) = 0.341856 + / - 0.0042(stat)

Interpretation

M In effective field theory (EFT) language, the Standard Model Lagrangian is the first term in an effective Lagrangian

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{D>4} \sum_{i} \frac{c_i^{(D)}}{\Lambda^{D-4}} \mathcal{O}_i^{(D)}$$

 \mathbf{M} Where Λ generically represents the scale of the new physics. C_i are dimensionless Wilson coefficients.

EFT implemented in <u>dim6top</u> model and <u>SMEFT@NLO</u> model

which translate a Lagrangian into a MC sample.

- These model are implemented inside <u>MadGraph5_aMC@NLO</u> framework

EFT interpretation

The measured coefficients probe most of the lowest-order EFT operators relevant to LHC $t\bar{t}$ production.

EFT interpretation

The measured coefficients probe most of the lowest-order EFT operators relevant to LHC $t\bar{t}$ production.

SM NLO : C(k, k) = 0.366313 +/- 0.0042 (stat) Ctg NLO : C(k, k) = 0.375982 +/- 0.0042 (stat)

EFT interpretation

The measured coefficients probe most of the lowest-order EFT operators relevant to LHC $t\bar{t}$ production.

- Spin correlation :
 - The impact of Ctg is low.
 - For other spin corrections observables, the effect is very low or not observed.

 $O_{\rm tG} = y_{\rm t} g_{\rm s} (\overline{Q} \sigma^{\mu\nu} T^a t) \tilde{\phi} G^a_{\mu\nu}$ g000000000

SM NLO : C(k, k) = 0.366313 +/- 0.0042 (stat) Ctg NLO : C(k, k) = 0.375982 +/- 0.0042 (stat)

Compute α_i and β_i

Linear Term

quadratic Term

 α_i/Λ^2 and β_i/Λ^4 at LO : C(k,k)

SMEFT model is used to generate MC sample **M** The value of Ctg affect the spin correlation

Linear Term

Comparaison between SMEFT and Dim6Top Model

SMEFT model and Dim6top model show appx. same value of α_{ctq8} and β_{ctq8} [within the statistical uncertainties.]

- 1. Spin observables is sensitive to a different coefficient of the spin density matrix of $t\overline{t}$ production.
- 2. Precision top quark spin measurements are a powerful probe of new physics and complementary to other approaches
- 3. Spin observables are sensitive to many BSM operator which can be use to constrain the Wilson coefficients
- 4. A Comparaison between SMEFT and Dim6top is shown

 α_i/Λ^2 and β_i/Λ^4 at LO : C(k,k)

C(r,r) and C(n,n) in back-up

MEFT model is used to generate MC sample **M** The value of WC affect

- Meaviest fundamental particle (known) :
 - $m_t = 173.34 \pm 0.27(stat) \pm 0.71(syst)GeV$ [link]
- ${\ensuremath{\overline{\mathrm{M}}}}$ Short life time 10^{-24} , so it decay before hadronization.
- **IDENTIFY AND SET OF ACTORY, LARGE PAIRE PRODUCTION.**

own): (syst)GeV [link] av before

Meaviest fundamental particle (known) :

• $m_t = 173.34 \pm 0.27(stat) \pm 0.71(syst)GeV$ [link]

- **I** LHC is a Top Factory, large paire production.
- ${\bf \ensuremath{\overline{N}}}$ For leading-order (LO) : $q\bar{q}$ and gg initiated subprocesses contribute.

own): (*syst*)GeV [link] ay before

production. Jg initiated

Meaviest fundamental particle (known) :

• $m_t = 173.34 \pm 0.27(stat) \pm 0.71(syst)GeV$ [link]

- **IDENTIFY AND SET OF ACTORY, LARGE PAIRE PRODUCTION.**
- **V** For leading-order (LO) : $q\bar{q}$ and gg initiated subprocesses contribute.
- ☑ For next-to-leading-order (NLO) : qg initiated subprocess contribute.

own): (syst)GeV [link] ay before

production. Ig initiated

~4%

Top quarks pair decay mode

☑ All - hadronic

- Largest BR
- Largest QCD background
- Event fully constrained

Semi - leptonic

- Hight BR
- Medium background
- Event constrained

I Di-leptonic

- Small BR
- S/B Good
- Event under-constrained

Top quarks pair decay mode

☑ All - hadronic

- Largest BR
- Largest QCD background
- Event fully constrained

Semi - leptonic

- Hight BR
- Medium background
- Event constrained

Spin Correlations

Distributions for the correlation of top spins along each axis (probing diagonal of C (a, b) matrix)

Spin correlations along each axis consistent with SM expectations (NLO from 1508.05271)

Spin Correlation Vs Ctg

Spin correlation :

The impact of Ctg at NLO/LO is low, except C(r,k)+C(k,r).

For other spin corrections observables, the effect is very low or not observed.

Spin Correlation Vs Ctg

Spin correlation :

- Free impact of Ctg at NLO/LO is low.
- For other spin corrections observables, the effect is very low or not observed.

 α_i/Λ^2 and β_i/Λ^4 at LO : C(k,k)

Minimum Dimberson and SMEFT model are used to generate MC sample

31

Which Wilson coefficients affects $t\bar{t}$ production the most ?

- 18 operator expect to affect $t\bar{t}$ process :
 - 4-quark (2-heavy, 2-light) operator
 - Heavy quark boson
- We Can not prob gluon self-coupling cG in dim6top or SMEFT@NLO

parameter	$tar{t}$ s	single t	
$C^{1,8}_{Qq}$	Λ^{-2}	—	
$C^{3,8}_{Qq}$	Λ^{-2} Λ^{-2}	$^{-4}~[\Lambda^{-2}]$	
C_{tu}^8,C_{td}^8	Λ^{-2}	—	
$C_{Qq}^{1,1}$	$\Lambda^{-4}~[\Lambda^{-2}]$	—	
$C^{3,1}_{Qq}$	$\Lambda^{-4}~[\Lambda^{-2}]$	Λ^{-2}	
C_{tu}^1,C_{td}^1	$\Lambda^{-4}~[\Lambda^{-2}]$	—	
C^8_{Qu}, C^8_{Qd}	Λ^{-2}		
C_{tq}^8	Λ^{-2}	—	
C_{Qu}^1, C_{Qd}^1	$\Lambda^{-4}~[\Lambda^{-2}]$	_	
C^1_{tq}	$\Lambda^{-4}~[\Lambda^{-2}]$	—	
$C_{\phi Q}^{-}$		—	
$C^3_{\phi Q}$	—	Λ^{-2}	
$C_{\phi t}$	—	—	
$C_{\phi tb}$	—	Λ^{-4}	
C_{tZ}	—	—	
C_{tW}	_	Λ^{-2}	
C_{bW}	_	Λ^{-4}	
C_{tG}	Λ^{-2}	$[\Lambda^{-2}]$	

1910.03606

 α_i/Λ^2 and β_i/Λ^4 at LO : C(r,r)

 α_i/Λ^2 and β_i/Λ^4 at LO : C(r,r)

 α_i/Λ^2 and β_i/Λ^4 at LO : C(k,k)

