

Crafting magnetic skyrmions at room temperature: size, stability and dynamics in multilayers

RJP 2021

Unité mixte de physique CNRS/Thales, Palaiseau Supervisors: Vincent Cros & Nicolas Reyren

Interactions in ferromagnets: symmetric exchange

FM material, for ex : Co

HM material, for ex : Pt Spin-orbit coupling

Interactions in ferromagnets: perpendicular magnetic anisotropy

Anisotropy

6

$\widehat{\mathbf{m}}$ is almost continuous in space

	Heisenberg exchange	Dzyaloshinskii-Moriya interaction	Perp. anisotropy	Zeeman
Energy density (J m ⁻³)	$E_A = \frac{A}{\left(\frac{\partial m_i}{\partial x_j}\right)^2}$	$E_D = D(m_z \operatorname{div} \widehat{\mathbf{m}} - (\widehat{\mathbf{m}} \cdot \nabla)m_z)$	$E_K = -\frac{K_u}{(m_z)^2}$	$E_z = -\mu_0 \widehat{H} \cdot \widehat{M_s}$
7	$E(\land) < E(\checkmark)$	$E(\swarrow) < E(\land $	E() < E())	E(▲) < E(▼)

Stabilisation of skyrmions - balance of energies

Uniform background (magnetic domain)

Energy gain with DMI

Energy cost due to exchange

Energy cost due to anisotropy

In well designed materials \rightarrow all energies of similar magnitude \rightarrow skyrmions can be stable objects

Two types of skyrmion systems

Néel skyrmions

- nm-thick films and multilayers
- Ir/PdFe, Pt/Co/Ir, Ta/CoFeB/Pt, etc.

B. Zimmermann *et al, Appl. Phys. Lett.* **113**, 232403 (2018)

- thin slabs of a single crystal
- MnSi, Fe_{0.5}Co_{0.5}Si, FeGe, MnGe, etc.

K. Shibata *et al, Nat. Nanotech.* **8**, 723-728 (2013)

Bloch skyrmions

Previous milestones

Previous milestones

Previous milestones

N. Romming et al, Phys. Rev. Lett. 114, 177203 (2015)

Simulations: m_z component of the magnetisation, 1 frame = 200 ps

1 magnetic layer of 0.6 nm

14

Strategy to obtain room-temperature stability

C. Moreau-Luchaire et al, Nat. Nanotech. 11, 444 (2016)

Importance of dipolar interactions

Hybrid chiral skyrmions

Magnetic Force Microscopy

Skyrmion manipulation by current

W. Legrand et al, Nano Lett. 17, 2703 (2017); D. Maccariello, WL et al, Nat. Nanotech. 13, 233 (2018)

Stabilizing antiferromagnetic skyrmions

NV observation of SAF skyrmions

Reduced size Observed radius 50-100 nm Actual radius ~ 25-35 nm

Foreseen applications

A. Fert et al, Nat. Nanotech. 8, 152 (2013); A. Fert et al, Nat. Rev. Mat. 2, 17031 (2017)

D. Pinna *et al*, *Phys. Rev. Appl.* **9**, 064018 (2018) J. Zazvorka *et al*, arXiv:1805.05924 (2018)

G. Bourianoff et al, AIP Adv. 8, 055602 (2018)

Outlook

Antiferromagnetic skyrmions in SAF: more layers/other FM

- > Have potential to be reduced in size below 10 nm
- > Possibility of motion without topology-related deflection
- > More efficient motion mechanism ?
- > Electrical detection + Topological Hall effect

Skyrmion lattices

- > Motion at lower current densities
- > Interesting reciprocal space properties
- > Use for topological supraconductivity experiments

Rare-earth multilayers rather than alloys

- > Reduction of magnetisation
- > Efficient dynamics
- > Bulk perpendicular magnetisation

