CHASING THE COSMIC ACCELERATORS WITH HIGH ENERGY ASTROPARTICLES

CLAIRE GUÉPIN

Neil Gehrels fellow, University of Maryland, College Park & NASA Goddard Space Flight Center, Greenbelt

Rencontres des Jeunes Physicien·ne·s 2021

Adapted from *GRAND collaboration* (2018)

2

A compact source

Neutrinos Gamma rays Cosmic rays: protons, nuclei Gravitational waves

Adapted from *GRAND collaboration* (2018)

A compact source

Neutrinos Gamma rays Cosmic rays: protons, nuclei Gravitational waves

Photopion production Pair production

Adapted from GRAND collaboration (2018)

Number of observed sources, resolutions

ex. observatories LSST, TAP, WFIRST, SKA, CTA

LSST : ~ 10^6 sources / night in 2023

Photons, cosmic rays (nucleons and charged nuclei), neutrinos et gravitational waves

ex. H.E.S.S. ex. Auger

ex. IceCube

ex. Virgo

Multi-messenger observations of transient sources

ex. GW170817, ex. IC170922A & TXS 0506+056

Number of observed sources, resolutions

ex. observatories LSST, TAP, WFIRST, SKA, CTA

LSST : ~ 10^6 sources / night in 2023

Photons, cosmic rays (nucleons and charged
nuclei), neutrinos et gravitational wavesex. H.E.S.S.ex. Augerex. IceCubeex. Virgo

Unprecedented information about the high-energy universe

Sources of high-energy cosmic rays and neutrinos?

For instance: high to ultra-high energy cosmic-ray spectrum

RJP 2021

Number of observed sources, resolutions

ex. observatories LSST, TAP, WFIRST, SKA, CTA

LSST : ~ 10^6 sources / night in 2023

Photons, **cosmic rays** (nucleons and charged nuclei), **neutrinos** et **gravitational waves**

ex. H.E.S.S. ex. Auger

ex. IceCube

ex. Virgo

Unprecedented information about the high-energy universe

Sources of high-energy cosmic rays and neutrinos?

Supernovae? Tidal disruptions by massive black holes? ...

Source:

- distance $d_{
 m L}$
- variability timescale $t_{\rm var}$
- luminosity (photons) $L_{\rm bol}$
- bulk Lorentz factor Γ

Source:

- distance $d_{\rm L}$
- variability timescale t_{var}
- luminosity (photons) $L_{\rm bol}$
- bulk Lorentz factor Γ

Transient sources

High-energy emissions? Populations?

Micro-physic processes Particle acceleration? Interactions? **Future UHE observatories** Coincident observations?

Source:

- distance $d_{\rm L}$
- variability timescale $t_{\rm var}$
- luminosity (photons) $L_{
 m bol}$
- bulk Lorentz factor Γ

Transient sourcesMicro-physic processesFuture UHE observatoriesHigh-energy emissions? Populations?Particle acceleration? Interactions?Coincident observations?
$$p\gamma \rightarrow N\pi$$
 $\pi^+ \rightarrow \mu^+ + \overline{\nu_{\mu}}$ $\pi^- \rightarrow \mu^- + \overline{\nu_{\mu}}$ $\mu^+ \rightarrow e^+ + \overline{\nu_{\mu}} + \overline{\nu_e}$ $\mu^- \rightarrow e^- + \overline{\nu_{\mu}} + \overline{\nu_e}$

RJP 2021

RJP 2021

Source:

- distance $d_{
 m L}$
- variability timescale $t_{\rm var}$
- luminosity (photons) $L_{
 m bol}$
- bulk Lorentz factor Γ

Transient sourcesMicro-physic processesFuture UHE observatoriesHigh-energy emissions? Populations?Particle acceleration? Interactions?Coincident observations? $p\gamma \rightarrow N\pi$ $\pi^+ \rightarrow \mu^+ + \overline{\nu_{\mu}}$ $\pi^- \rightarrow \mu^- + \overline{\nu_{\mu}}$ $\mu^+ \rightarrow e^+ + \overline{\nu_{\mu}} + \overline{\nu_e}$ $\mu^- \rightarrow e^- + \overline{\nu_{\mu}} + \overline{\nu_e}$

Source:

- distance $d_{\rm L}$
- variability timescale $t_{\rm var}$
- luminosity (photons) $L_{
 m bol}$
- bulk Lorentz factor Γ

Transient sourcesMicro-physic processesFuture UHE observatoriesHigh-energy emissions? Populations?Particle acceleration? Interactions?Coincident observations?
$$p\gamma \rightarrow N\pi$$
 $\pi^+ \rightarrow \mu^+ + \overline{\nu_{\mu}}$ $\pi^- \rightarrow \mu^- + \overline{\nu_{\mu}}$ $\mu^+ \rightarrow e^+ + \overline{\nu_{\mu}} + \overline{\nu_e}$ $\mu^- \rightarrow e^- + \overline{\nu_{\mu}} + \overline{\nu_e}$

RJP 2021

Source:

- distance $d_{\rm L}$
- variability timescale $t_{\rm var}$
- luminosity (photons) $L_{\rm bol}$
- bulk Lorentz factor Γ

Source:

- distance $d_{
 m L}$
- variability timescale $t_{\rm var}$
- luminosity (photons) $L_{\rm bol}$
- bulk Lorentz factor Γ

Source:

- distance $d_{
 m L}$
- variability timescale $t_{\rm var}$
- luminosity (photons) $L_{
 m bol}$
- bulk Lorentz factor Γ

Source:

- distance $d_{
 m L}$
- variability timescale $t_{\rm var}$
- luminosity (photons) $L_{
 m bol}$
- bulk Lorentz factor Γ

- identify important physical processes for emissions of transient sources
 - energy losses of secondary particles π^{\pm} , μ^{\pm} **Guépin** & Kotera (2017)

High-energy **neutrinos** coincident with photon flares: $E_{\nu,max}$ (eV), **Guépin** & Kotera (2017)

17

MESSENGER EMISSIONS FROM COMPACT SOURCES

General macroscopic models: explore the parameter space of transient sources

- identify important physical processes for emissions of transient sources
 - energy losses of secondary particles π^{\pm} , μ^{\pm}
 - acceleration of secondary particles π^{\pm} , μ^{\pm}

Guépin & Kotera (2017)

Guépin (2020)

Impact of secondary particle acceleration on $E_{\nu,\text{max}}$ (eV), **Guépin** (2020)

RJP 2021

MESSENGER EMISSIONS FROM COMPACT SOURCES

General macroscopic models: explore the parameter space of transient sources

- identify important physical processes for emissions of transient sources
 - energy losses of secondary particles π^{\pm} , μ^{\pm}
 - acceleration of secondary particles π^{\pm} , μ^{\pm}
- Guépin & Kotera (2017) **Guépin** (2020)
- identify promising sources for the production of detectable multi-messenger emissions

Impact of secondary particle acceleration on $E_{\nu,\text{max}}$ (eV), **Guépin** (2020)

RJP 2021

_

Transient sourcesMicro-pHigh-energy emissions? Populations?Particle acce

Micro-physic processes Particle acceleration? Interactions? **Future UHE observatories** Coincident observations?

MONTE-CARLO CODE: INTERACTIONS OF ULTRA-HIGH ENERGY COSMIC RAYS PIC (PARTICLE IN CELL) SIMULATIONS: ACCELERATION OF COSMIC RAYS

Armengaud et al. (2007), Kotera et al. (2009), Alves Batista et al. (2016)

Implement new modules, specific for study of transient sources

- + energy losses of charged pions and muons -----
- + acceleration of protons, nuclei, charged pions and muons --> Guépin (2020)

MONTE-CARLO CODE: INTERACTIONS OF ULTRA-HIGH ENERGY COSMIC RAYS

Implement new modules, specific for study of transient sources

Tidal disruption of a star by a massive black hole

- + energy losses of charged pions and muons _____
- + acceleration of protons, nuclei, charged pions and muons --> Guépin (2020)

Merger of two neutron stars

MONTE-CARLO CODE: INTERACTIONS OF ULTRA-HIGH ENERGY COSMIC RAYS

Guépin, Kotera, Barausse, Fang, Murase (2018)

Implement new modules, specific for study of transient sources

- + temporal variations of photon/hadron backgrounds
- + energy losses of charged pions and muons -
- + acceleration of protons, nuclei, charged pions and muons -> Guépin (2020)

Predict diffuse spectra of high-energy neutrinos

First study of proton acceleration in pulsar magnetospheres

First study of proton acceleration in pulsar magnetospheres

First study of proton acceleration in pulsar magnetospheres

First study of proton acceleration in pulsar magnetospheres

First study of proton acceleration in pulsar magnetospheres

Guépin, Cerutti, Kotera (2020)

+ Emission of HE photons in Galactic center region, population of millisecond pulsars (analytique) Guépin, Rinchiuso, Kotera, Moulin, Pierog, Silk (2018)

RJP 2021

First study of proton acceleration in pulsar magnetospheres

Guépin, Cerutti, Kotera (2020)

+ Emission of HE photons in Galactic center region, population of millisecond pulsars (analytique) Guépin, Rinchiuso, Kotera, Moulin, Pierog, Silk (2018)

Collaboration GRAND incl. Guépin (2019)

Collaboration POEMMA incl. Guépin (2020)

Collaboration GRAND incl. Guépin (2019)

Collaboration POEMMA incl. Guépin (2020)

Collaboration GRAND incl. Guépin (2019)

Simulations ZHAireS

• Reconstruction nature cosmic ray (proton, iron)

Least mean square algorithm **Zilles, Tueros**

Machine learning for reconstruction

Machine learning group, graph convolutional networks de Errico, Torres de Mello Neto, Koirala, Tueros, Martineau...

Collaboration POEMMA incl. Guépin (2020)

Sky coverage, observation strategy

Guépin, Sarazin, Krizmanic, Loerincs, Olinto, Piccone (2019)

Observation of transient sources

Venters, Reno, Krizmanic, Anchordoqui, Guépin, Olinto (2020)

• Dark matter detection

Guépin, Aloisio, Anchordoqui, et al. in prep.

POEMMA, sky coverage, Observation of transient sources

33

e.g. for transient sources

Perspectives

Self-consistent and time-dependent	Marry micro-physic scales and	New observations: treatment and
models for radiation backgrounds	macroscopic source models	observation strategies

35