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! parton distribution functions [DGLAP]

• ‘standard’ approach

!collinear factorization allows for identification of universal [process 
independent] pdfs

!pdfs extracted via global fits to data

↪→ parameterized non-perturbative initial condition

!systematically improvable in perturbation theory [NLO, NNLO,...]



! proton vs. nuclear pdfs

• proton case

! collinear factorizability proven

! wealth of data (DIS, DY, jets)

↪→ very reliable pdfs in ‘data covered’ kinematical 
range

• nuclear case 

! collinear factorizability is a working assumption

↪→ for testability, see Paloma’s talk

! relatively scarce data

! standardly encoded as nuclear modification of 
proton pdfs [inherits proton pdf uncertainties]
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Figure 2: The kinematical reach of the DIS, DY and pion production data (see Table 1)
corresponding to the factorization scale choices explained in the text. The points indicate
the lowest x and Q2 values in which partons are sampled in the cross-section calculation.
Also the BRAHMS data [37] for negatively charged hadron production is shown as it will be
discussed later in Sec. 4. The dashed horizontal line indicates the kinematical cut imposed
on the data.

DIS cross-section at NLO, the main gluon constraint provided by DIS still comes
through the scale evolution of sea quarks that is driven by the gluons.

• Drell-Yan dilepton production

The DY data, taken together with DIS, can discriminate between valence and
sea quarks near x = 0.1. The DY cross-section retains also some sensitivity to
the sea quarks at larger x but, unfortunately, the precision of the current data
is not enough to exploit this constraint in its full potential. The invariant mass
M2 in our data sample is typically large, M2 ! Q2

0, and consequently there are
sizable evolution effects that constrain the gluons also.

• Inclusive pion production

This type of data is usually accompanied by a rather large normalization un-
certainty stemming, among other sources, from the model-dependent quantity
〈Ncoll〉. Apart from the normalization uncertainty, the shape of Rπ

dAu can never-
theless act as a vital constraint, especially for the nuclear modification for gluons.
The slight downward trend seen in the large-pT part of Rπ

dAu at midrapidity [28]
indicates the need for a gluon EMC-effect, and the smallest-pT part of the Rπ

dAu

would not be satisfactorily reproduced without shadowing (see Fig. 9 ahead).
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! small-x and DGLAP

• at small-x novel [non-linear parton density induced] effects come into play

• deviations from NLO-DGLAP identified in [of all places...] HERA data for F2

! BFKL resummed DGLAP

↪→ accounts for small-x evolution linearly

! an interim fix...

! DGLAP is not a predictive tool at small-x

! nuclei probe smaller x at lower energy [as compared to proton]
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Figure 4: The proton structure function F2(x,Q2) at small x, computed from PDFs obtained from
fits with different values of Acut, for Q2 =15 GeV2 (left) and Q2 =3.5 GeV2 (right), compared to
the data. Wider uncertainty bands correspond to more restrictive cuts.

is causally connected to it (right), with no cut (standard NNPDF1.2 fit [7]) and with the
lowest and highest of the cuts of Fig. 3. Instead of showing directly the data used in
the fit, we display the very precise interpolation of the data of Ref. [31], which is more
accurate than any individual data point because it combines all data in a way which does
not depend on theory or model assumptions.

It is clear that at the high scale Q2 = 15 GeV2 there is no significant difference in the
data region between the three different predictions from the fit without cuts, the one with
intermediate cut and the one with the maximum cut. The only difference is the growth of
the PDF uncertainty in the extrapolation region, which is statistically expected due to the
missing experimental information removed by the cuts. However, at low Q2 = 3.5 GeV2,
besides showing an increase of uncertainty, the prediction obtained by backward evolution
of the data above the cut exhibits a systematic downwards trend: it always lies below the
HERA data. As we increase the value of Acut, this trend becomes more and more evident,
and it turns on smoothly as we move from Q2 = 15 GeV2 to Q2 = 3.5 GeV2. This is to
be contrasted to the uncut NNPDF1.2 fit, which always sits on top of the data. It would
thus seem that the backward NLO DGLAP evolution of the high–scale data is too strong:
it overestimates the actual amount of evolution seen in the data themselves.

Before trying to assess more quantitatively the size of this effect, let us first examine
how the cuts affect the individual PDFs. In Fig. 5 we show the singlet and gluon PDFs,
which are largest at small x; as well as the valence and triplet which dominate at large x,
for the uncut fit and for two different kinematical cuts. We observe that at small x the
cut produces a sizable increase in PDF uncertainties and a change in central values which
seems to follow a systematic trend as the cut is moved. However, PDFs are consistent with
each other at the one sigma level, which implies that predictions for physical observables
obtained from any of these PDFs will also be compatible at this level, as we shall see
explicitly below. On the other hand, at large x the PDFs are essentially unaffected by
the cut. This shows that the effect of the cut is indeed only on the region affected by it,
displayed in Fig. 2.

A quantitative estimate of possible deviations can be obtained by defining the sta-
tistical distance between a data point Fdata, i with uncertainty σdata,i and the associated
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Figure 2: Causal structure of DGLAP evolution in the (x,Q2) plane. The arrow lines denote the
trajectories followed by the maxima of the curves in Fig. 1. The upper right (blue) region contains
the data used to determined PDFs which are then evolved to the causally connected (green) region
below it. No information can be obtained on the (red) ’disconnected’ region in the lower left corner.
In practice, the boundary between the connected and disconnected region will be approximated
by a vertical line with x = xmin. The number of data points in each region are listed in Table 1
below.

uncertainty. We will address this issue, which has already been raised in the past with
somewhat contradictory conclusions [13, 14] in the last part of this paper. Second, such
deviations might provide evidence for effects which, if included systematically, could affect
LHC observables in a non-negligible way. For instance, recent computation of small x
resummation corrections to various hard processes [15–19] shows that their effect at the
LHC is expected to be of the same size or larger than NNLO corrections. Our results may
support the need for a systematic inclusion of these effects.

Because our basic strategy consists of comparing to data the results of perturbative
evolution, we must first discuss which kinematic regions are connected by perturbative
evolution in a causal way, i.e., such that the results of evolution to one region are affected
by a change in the boundary condition in the other region. TheDGLAP evolution equation
for the vector of PDFs f(x,Q2) has the form

Q2
df

(

x,Q2
)

dQ2
=

∫ 1

x

dy

y
P

(

αs(Q
2),

x

y

)

f
(

y,Q2
)

, (1)

where P (αs, x) is a splitting function matrix. Because of the convolution, the solution
f(x̄, Q̄2) of Eq. (1) at some point z = (x̄, Q̄2) only depends on the boundary condition
f(y,Q2

0) in the range y ∈ [x̄, 1]. Hence, a priori the past causal cone of the point (x̄, Q̄2)
is given by the region (x > x̄, Q2 < Q̄2).

However, the bulk of the contribution to the convolution integral Eq. (1) comes from
a small range in x, so that in practice evolution mostly proceeds along trajectories that
go along a path from larger (x0, Q2

0) to smaller (x̄, Q̄2). This picture in fact becomes
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:: initial condition independent statement :::: not NLLO, not only heavy quark, ...  ::



! non-linear QCD approach

• kt factorization  + dipole formulation of high energy QCD

! limited by kt factorizability and its compatibility with dipole formulation 

↪→ no access to ‘standard’ pdfs

! rather, unintegrated gluon distribution is the relevant object

! recall François’ talk for nuclear case

• first principle QCD calculation of x-evolution of dipole scattering amplitude

! running coupling BK

↪→ best, numerically implementable,  incarnation of non-linear QCD

↪→ unlike most [phenomenological]  ‘dipole models’ 

↪→ first proton then nuclei



!

• at high energy [x << 1] the coherence length of the virtual photon fluctuation

• total virtual photon-proton cross section can be factorized as

dipole QCD [in DIS]

lc ∼ (2mNx)−1 " 0.1/x fm# RN

center-of-mass energies reached in primary collisions are simply unattainable in ac-

celerator experiments in the foreseeable future. In this work we set the ground for a
systematic program oriented to provide parameter-free extrapolations of the dipole

amplitudes (both for proton and nuclei) to very small values of x based on first
principle calculations. Parametrizations of the dipole-proton scattering amplitudes
down to very small x based on the results of this work are publicly available through

simple numeric routines [61].

2. Setup

In this section we briefly review, in a self contained manner, the main ingredients
needed for the calculation of the inclusive and longitudinal DIS structure functions.

2.1 Dipole model

At x ! 1, the inclusive structure function of DIS can be expressed as

F2(x, Q2) =
Q2

4 π2αem
(σT + σL) , (2.1)

where αem is the electromagnetic coupling and σT,L stands for the virtual photon-
proton cross section for transverse (T ) and longitudinal (L) polarizations of the
virtual photon. The longitudinal structure function is obtained by considering only

the longitudinal contribution:

FL(x, Q2) =
Q2

4 π2αem
σL . (2.2)

It is well known that at high energies or small x (where the coherence length of the

virtual photon fluctuation lc ≈ (2mNx)−1 # 0.1/x fm $ RN , with mN and RN

the proton mass and radius respectively), and using light-cone perturbation theory,

the total virtual photon-proton cross section can be written as the convolution of
the light-cone wave function squared for a virtual photon to fluctuate into a quark-

antiquark dipole, |ΨT,L|2, and the imaginary part of the dipole-target scattering
amplitude, N . For transverse and longitudinal polarizations of the virtual photon
one writes [37, 38]:

σT,L(x, Q2) =

∫

1

0

dz

∫

db dr |ΨT,L(z, Q2, r)|2 N (b, r, x) , (2.3)

where z is the fraction of longitudinal momentum of the photon carried by the

quark, r is the transverse separation between the quark and the antiquark and b

the impact parameter of the dipole-target collision (henceforth boldface notation

indicates two-dimensional vectors). The wave functions |ΨT,L|2 for the splitting of
the photon into a qq̄ dipole are perturbatively computable within QED. We refer the
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Dipole model of DIS

Dipole cross section. 
Strong interactions and 
x-dependence are here

σdip(x, r) = 2
∫

d2bN (x, b, r)

σγ∗ P
T,L (x,Q2)=

∫ 1

0
dz

∫
d2r

∣∣∣Ψγ∗→qq̄
T,L (z,Q, r)

∣∣∣
2
σdip(x, r)

!"It stems from kt-factorization theorem in the limit x->0 (Nikolaez-Zakharov-Mueller)

!"DIS x sections: Convolution of photon wavefunction with dipole cross section

r

P

q

q

P

!"
x

y
q

!"γ∗ , Q2

b

z

1− z

Photon wavefunction
Calculable within QED 

QED calculation

[imaginary part of] 
dipole-target scattering amplitude

:: all QCD information
:: all x dependence
:: non-perturbative, but x-evolution
  computable from first principles



! impact parameter dependence

• b-dependence governed by long-distance non-perturbative physics

• AAMS 1.0 resorts to translational invariance approximation

! proton homogeneous in transverse plane

! exclusive observables require more sophisticated treatment of b-dependence

center-of-mass energies reached in primary collisions are simply unattainable in ac-

celerator experiments in the foreseeable future. In this work we set the ground for a
systematic program oriented to provide parameter-free extrapolations of the dipole

amplitudes (both for proton and nuclei) to very small values of x based on first
principle calculations. Parametrizations of the dipole-proton scattering amplitudes
down to very small x based on the results of this work are publicly available through

simple numeric routines [61].

2. Setup

In this section we briefly review, in a self contained manner, the main ingredients
needed for the calculation of the inclusive and longitudinal DIS structure functions.

2.1 Dipole model

At x ! 1, the inclusive structure function of DIS can be expressed as

F2(x, Q2) =
Q2

4 π2αem
(σT + σL) , (2.1)

where αem is the electromagnetic coupling and σT,L stands for the virtual photon-
proton cross section for transverse (T ) and longitudinal (L) polarizations of the
virtual photon. The longitudinal structure function is obtained by considering only

the longitudinal contribution:

FL(x, Q2) =
Q2

4 π2αem
σL . (2.2)

It is well known that at high energies or small x (where the coherence length of the

virtual photon fluctuation lc ≈ (2mNx)−1 # 0.1/x fm $ RN , with mN and RN

the proton mass and radius respectively), and using light-cone perturbation theory,

the total virtual photon-proton cross section can be written as the convolution of
the light-cone wave function squared for a virtual photon to fluctuate into a quark-

antiquark dipole, |ΨT,L|2, and the imaginary part of the dipole-target scattering
amplitude, N . For transverse and longitudinal polarizations of the virtual photon
one writes [37, 38]:

σT,L(x, Q2) =

∫

1

0

dz

∫

db dr |ΨT,L(z, Q2, r)|2 N (b, r, x) , (2.3)

where z is the fraction of longitudinal momentum of the photon carried by the

quark, r is the transverse separation between the quark and the antiquark and b

the impact parameter of the dipole-target collision (henceforth boldface notation

indicates two-dimensional vectors). The wave functions |ΨT,L|2 for the splitting of
the photon into a qq̄ dipole are perturbatively computable within QED. We refer the
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reader to e.g. [28] for explicit expressions to lowest order in αem. All the information

about the strong interactions – along with all x-dependence – in Eq. (2.3) is encoded
in the dipole-proton scattering amplitude, N (b, r, x). Although this quantity is a

genuinely non-perturbative object, its evolution towards smaller values of x can be
studied perturbatively via the BK equation. On the contrary, its impact parameter
dependence cannot be studied by means of the perturbative BK equation, since it is

governed by long distance, non-perturbative physics. To circumvent this theoretical
limitation we will resort to the translational invariance approximation (also used

in [28]), which regards the proton as homogeneous in the transverse plane. Under
this approximation the virtual photon-proton cross section Eq. (2.3) can be rewritten
as follows:

σT,L(x, Q2) = σ0

∫ 1

0

dz

∫

dr |ΨT,L(z, Q2, r)|2 N (r, Y ) , (2.4)

where r = |r| is the dipole size (the notation v ≡ |v| for all the 2-dimensional vectors

will be also employed throughout the rest of the paper) and σ0 is a dimensionful
constant resulting from the b integration that sets the normalization – this will be
one of the free parameters in our fits. Note that this result relies on the assumption

that a factorized structure of x, r and b dependences remains unchanged through-
out the evolution. In this case the parameter σ0 is related to the t-dependence in

diffractive events, see e.g. [62]. On the other hand, this factorized structure may
be assumed solely for the initial condition, while small-x evolution is performed,

in the translational-invariant approximation, separately for every impact parameter
(as done e.g. for nuclei in [63, 64]). This results in a σ0 varying (increasing) with
energy [65]. We leave this latter aspect for future studies.

2.2 BK equation with running coupling

The primary physical mechanism driving the small-x evolution of the dipole scat-

tering amplitude is the emission of soft gluons off either the quark or the antiquark
in the original dipole. The leading order BK equation resumming the corresponding

αs ln(1/x) contributions to all orders reads

∂N (r, Y )

∂ Y
=

∫

dr1 KLO(r, r1, r2)

× [N (r1, Y ) + N (r2, Y ) −N (r, Y ) −N (r1, Y )N (r2, Y )] , (2.5)

with the evolution kernel given by

KLO(r, r1, r2) =
Nc αs

2π2

r2

r2
1 r2

2

, (2.6)

and r2 = r − r1. Here, Y =ln(x0/x) is the rapidity variable and x0 is the value of x
where the evolution starts, which should be small enough for the dipole model to be
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‘b-integration’
fit parameter

:: if factorized structure [of x, r and b dependence] 
  unchanged by evolution, then related to
  t-dependence in diffractive events



! from A to B

• want the best possible, numerically tractable, incarnation of non-linear evolution 

! with Dense-Dense effects and NLO

↪→ RFT-QCD contains all Dense-Dense effects

! no known strategy for numerical implementation

! NLO [running coupling] should trump Dense-Dense [toy model]
[Dumitru, Iancu, Portugal, Soyez and Triantafyllopoulos, JHEP 0708:062, 2007]

• ‘safely’ neglect Dense-Dense if NLO formulation available

! B-JIMWLK

↪→ no Dense-Dense, no NLO, numerically challenging ...

↪→ but BK [large N, mean field] solutions deviate only 0.1% from full B-JIMWLK
[Kovchegov, Kuokannen, Rummukainen, Weigert, NPA 823, 47 (2009)]

• ‘safely’ replace full B-JIMWLK by BK

! LO-BK not consistent with data [unless coupling very small]

! NLO-BK computed [Balitsky, Chirilli, Kovchegov, Weigert]

! running coupling part numerically tractable



! on why B is B’

• NLO-BK = all orders in αs Nf + other 

! all orders in αs Nf = rc + subtraction

! subtraction piece numerically demanding

↪→ running coupling contribution dominant over conformal piece in αs Nf 
piece

• scheme dependent definition of ‘subtraction’ piece

! Balitsky’s (Bal) scheme minimizes ‘subtraction’ contribution

• [other] yet to be numerically computed :: challenging ::

applicable. In our case x0 = 0.01 will be the highest experimental value of x included

in the fit.

The calculations in [46, 47] proceeded by including αs Nf corrections (Nf being
the number of flavors) into the evolution kernel to all orders and by then completing
Nf to the one-loop QCD beta-function via replacing Nf → −6πβ2, with β2 = (11Nc−
2Nf )/(12π). The calculation of the αs Nf corrections is particularly simple in the
s-channel light-cone perturbation theory (LCPT) formalism used to derive the BK

and JIMWLK equations: there αs Nf corrections are solely due to chains of quark
bubbles placed onto the s-channel gluon lines, as sketched in Fig. 1A. Importantly,
at the same degree of accuracy a new physical channel is opened, namely the emission

of a quark-antiquark pair, instead of a gluon, as depicted in Fig. 1B. The calculation
in [48] relied instead on the use of dispersive methods, arriving at the same results

as in the perturbative calculation in [47].

Neglecting the impact parameter dependence, the improved BK evolution equa-
tion for the dipole scattering amplitude obtained after resumming the subleading
αsNf corrections to all orders in [46, 47] can be written in the following, rather

general form [49]:
∂N (r, Y )

∂Y
= R[N ] − S[N ] , (2.7)

where both R and S are functionals of the dipole scattering amplitude, N . The
first, running coupling, term R[N ] in Eq. (2.7) gathers all the αs Nf factors needed

to complete the QCD beta function, resulting in a functional form identical to the
LO one but involving a modified kernel which provides the scale setting for the

running of the coupling. In turn, the second term in the r.h.s. of Eq. (2.7), S[N ],
the subtraction term, accounts for conformal, non running-coupling contributions.

A

x
0

z

x
1

x
0

1
x

z

z

1

21!"

"

B

Figure 1: Schematic representation of the diagrams contributing to the evolution to all

orders in αsNf . The s-channel gluon line can be attached to either the quark (upper line)

or the antiquark (lower line).

It would be erroneous to identify the gluon and quark-antiquark emission chan-

nels with the running and subtraction terms in Eq. (2.7) respectively. Importantly,
the quark-antiquark channel contains a logarithmic ultra-violet (UV) divergence as-
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Finally, we have checked that combining the subtraction
and running coupling contributions for both schemes adds
up to the same result. This is shown in Fig. 9, where we plot
the value of the total functional F ! R" S calculated
under the KW scheme [Eqs. (8) and (36) for the running
coupling term, R, and Eq. (41) for the subtraction term, S]
and under Balitsky’s scheme [Eqs. (7) and (35) for the
running coupling term and Eq. (40) for the subtraction

term]. The two results coincide within the estimation of
the numerical accuracy previously discussed. The agree-
ment between the two results is better in the small-!
region, where the two curves lay almost on top of each
other. In the saturation region, ! * 1, the agreement is
slightly worse, although the differences between the values
of F calculated in both schemes is still much less than the
differences between the running coupling terms them-
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! BK evolution with running coupling [Bal scheme]

sociated to the emission of a zero size pair which, in the large-Nc limit, is indistin-

guishable from one gluon emission and therefore contributes to the running of the
coupling on an equal footing. The emission of finite size quark-antiquark pairs is UV

finite and does not contribute to the running of the coupling. Thus, the decompo-
sition of the evolution kernel into running and subtraction contributions, although
constrained by unitarity arguments, is not unique. This is due to the fact that there

is some freedom in the way in which the UV divergence can be singled out from
the conformal one, so in order to perform a decomposition like the one in Eq. (2.7)

a precise separation scheme needs to be specified. Not surprisingly, the separation
schemes proposed in [46] and [47] were different. For a detailed discussion on this
subject we refer the reader to [49].

In this work we will consider only the running term in the evolution kernel. Ide-

ally one would like to include the subtraction piece of the evolution kernel in practical
applications as this would eliminate the uncertainty associated to the scheme choice

and would provide a richer physical description of the small-x evolution of the dipole
scattering amplitude. Unfortunately, its numerical evaluation [49] demands a very
large computing time. For a global fit like the one presented in this work, in which

the evolution is performed ∼ 103 times, such computing time is simply unaffordable.
On the other hand, as shown in [49] the contribution to the complete evolution kernel

stemming from the subtraction term is systematically smaller – and negligible at high
rapidities – than the one arising from the running term. In particular, we will follow

the prescription proposed by Balitsky in [46] to single out the running term since, as
demonstrated in [49], such choice minimizes the contribution to the evolution of the
subtraction term, neglected in what follows, with respect to the separation scheme

proposed in [47].

Finally, after dropping the subtraction term from Eq. (2.7), the BK evolution
equation including only running coupling corrections reads

∂N (r, Y )

∂Y
= RBal[N ] , (2.8)

where the running coupling functional is identical to the LO equation:

RBal[N ] =

∫

dr1 KBal(r, r1, r2)

× [N (r1, Y ) + N (r2, Y ) −N (r, Y ) −N (r1, Y )N (r2, Y )] , (2.9)

but with a modified evolution kernel that includes running coupling corrections.

Using Balitsky’s prescription, the kernel for the running term reads [46]

KBal(r, r1, r2) =
Nc αs(r2)

2π2

[

r2

r2
1 r2

2

+
1

r2
1

(

αs(r2
1)

αs(r2
2)

− 1

)

+
1

r2
2

(

αs(r2
2)

αs(r2
1)

− 1

)]

. (2.10)
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sociated to the emission of a zero size pair which, in the large-Nc limit, is indistin-

guishable from one gluon emission and therefore contributes to the running of the
coupling on an equal footing. The emission of finite size quark-antiquark pairs is UV

finite and does not contribute to the running of the coupling. Thus, the decompo-
sition of the evolution kernel into running and subtraction contributions, although
constrained by unitarity arguments, is not unique. This is due to the fact that there
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applications as this would eliminate the uncertainty associated to the scheme choice

and would provide a richer physical description of the small-x evolution of the dipole
scattering amplitude. Unfortunately, its numerical evaluation [49] demands a very
large computing time. For a global fit like the one presented in this work, in which

the evolution is performed ∼ 103 times, such computing time is simply unaffordable.
On the other hand, as shown in [49] the contribution to the complete evolution kernel

stemming from the subtraction term is systematically smaller – and negligible at high
rapidities – than the one arising from the running term. In particular, we will follow

the prescription proposed by Balitsky in [46] to single out the running term since, as
demonstrated in [49], such choice minimizes the contribution to the evolution of the
subtraction term, neglected in what follows, with respect to the separation scheme

proposed in [47].
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2.3 Regularization of the infrared dynamics

The BK equation is an integro-differential equation that involves integration over
all available phase-space for soft gluon emission. In the running coupling case, Eqs.
(2.8-2.10), the coupling has to be evaluated at arbitrarily large values of the dipole

size (small gluon momentum), and a regularization prescription to avoid the Landau
pole becomes necessary. A celebrated feature of the BK equation is its ability to

fix [66] the problem of infra-red diffusion characteristic of its linear counterpart, the
BFKL equation. The non-linear terms in the BK equation ensure that the dynamics

in the phase space region within the unitarity limit, i.e. for r ! 1/Qs, is frozen.
Such feature is shared by both the LO and running coupling BK equations, since it
is ultimately rooted in the non-linear combination of N ’s in the r.h.s. of Eq. (2.9),

which is identical in both cases. Thus, if Qs is perturbatively large, Qs ! ΛQCD,
then all the relevant dynamics takes place deep in the ultra-violet region of the phase

space, r ≤ 1/Qs. In such scenario the details about the regularization of the running
coupling in the infra-red become irrelevant for the result of the evolution.

Unfortunately, we can anticipate that such will not be the case in this work.
Taking the results by Golec-Biernat and Wüsthoff [28] as a guidance, one can estimate

that the proton saturation scale at the largest values of Bjorken-x to be considered in
this work, x ∼ 10−2, is of the order of Q2

s(x=10−2) ≈ (3·10−4/10−2)0.288 GeV2 % 0.36
GeV2. The fits to be presented in Section 4 yield even smaller values of the initial

saturation scale of the proton. Although larger than Λ2
QCD, such values for the

initial scale are not large enough to avoid sensitivity to the infra-red (IR) dynamics.

Actually, the detailed study of the infrared-renormalon ambiguities carried out in [48]
demonstrated that the sensitivity of the solutions of the evolution equation to several

different prescriptions used to regularize the coupling is relatively large even for initial
saturation scales as large as Q2

s ∼ 1÷2 GeV2. On the bright side, theoretical studies
of the Schwinger-Dyson equations for the gluon propagator in the IR and lattice

QCD results (see e.g. [67,68] and references therein) indicate that the strong coupling
freezes to a constant value, αfr, in the IR. Moreover, the value at which the coupling

freezes has been determined to be αfr ∼ 0.5÷0.7. While these results are somewhat
controversial and yet subject to discussion in the literature, in particular the very
definition of an infrared coupling, we will take them as a guidance to regularize the IR

dynamics. Otherwise, our prescription can be regarded as purely phenomenological.

Thus, for small dipole sizes r < rfr, with αs(r2
fr) ≡ αfr = 0.7, we shall evaluate

the running coupling according to the usual one-loop QCD expression:

αs(r
2) =

12π

(11Nc − 2Nf) ln
(

4 C2

r2Λ2
QCD

) , (2.11)

with Nf = 3, whereas for larger sizes, r > rfr, we freeze the coupling to the fixed value
αfr = 0.7. We take ΛQCD = 0.241 GeV, such that αs(MZ) = 0.1176, with MZ the
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Taking the results by Golec-Biernat and Wüsthoff [28] as a guidance, one can estimate

that the proton saturation scale at the largest values of Bjorken-x to be considered in
this work, x ∼ 10−2, is of the order of Q2

s(x=10−2) ≈ (3·10−4/10−2)0.288 GeV2 % 0.36
GeV2. The fits to be presented in Section 4 yield even smaller values of the initial

saturation scale of the proton. Although larger than Λ2
QCD, such values for the

initial scale are not large enough to avoid sensitivity to the infra-red (IR) dynamics.

Actually, the detailed study of the infrared-renormalon ambiguities carried out in [48]
demonstrated that the sensitivity of the solutions of the evolution equation to several

different prescriptions used to regularize the coupling is relatively large even for initial
saturation scales as large as Q2

s ∼ 1÷2 GeV2. On the bright side, theoretical studies
of the Schwinger-Dyson equations for the gluon propagator in the IR and lattice

QCD results (see e.g. [67,68] and references therein) indicate that the strong coupling
freezes to a constant value, αfr, in the IR. Moreover, the value at which the coupling

freezes has been determined to be αfr ∼ 0.5÷0.7. While these results are somewhat
controversial and yet subject to discussion in the literature, in particular the very
definition of an infrared coupling, we will take them as a guidance to regularize the IR

dynamics. Otherwise, our prescription can be regarded as purely phenomenological.

Thus, for small dipole sizes r < rfr, with αs(r2
fr) ≡ αfr = 0.7, we shall evaluate

the running coupling according to the usual one-loop QCD expression:

αs(r
2) =

12π

(11Nc − 2Nf) ln
(

4 C2

r2Λ2
QCD

) , (2.11)

with Nf = 3, whereas for larger sizes, r > rfr, we freeze the coupling to the fixed value
αfr = 0.7. We take ΛQCD = 0.241 GeV, such that αs(MZ) = 0.1176, with MZ the

– 9 –

mass of the Z boson. The factor C2 under the logarithm in Eq. (2.11) will be one of

the free parameters in the fit. It reflects the uncertainty in the Fourier transform from
momentum space, where the original calculation of αsNf corrections was performed,

to coordinate space. Alternatively, we could have fixed C2 to the value suggested
in [47], e−5/3−2γE , and chosen either ΛQCD or αfr as the free parameters controlling
the IR dynamics. Indeed, we have checked that such choices yield equally good fits

as those presented in Section 4 without changing much the value of the other free
parameters. However, both αfr and, specially, ΛQCD, are more tightly constrained

from both theoretical and phenomenological studies than C2.

2.4 Initial conditions for the evolution

Finally we have to specify the initial condition (i.c.) for the evolution or, equivalently,
the precise shape of the proton unintegrated gluon distribution (UGD), φ(x, k), at

the highest experimental value of Bjorken-x included in the fit, x0 = 0.01 (which,
by definition, corresponds to rapidity Y = 0). The UGD is related to the dipole

scattering amplitude via a Fourier transform:

φ(x, k) =

∫

dr

2 π r2
eik·r N (x, r) . (2.12)

This is a genuinely non-perturbative object which needs to be modeled. We will

consider two different families of initial conditions. The first one is inspired in the
original GBW ansatz [28] for the dipole scattering amplitude and parametrized in

the following way:

NGBW (r, Y =0) = 1 − exp

[

−
(

r2 Q2
s 0

4

)γ ]

. (2.13)

The second family of initial conditions [69] follows closely the McLerran-Venugopalan
(MV) model:

NMV (r, Y =0) = 1 − exp

[

−
(

r2Q2
s 0

4

)γ

ln

(
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! data

• all available F2(x,Q2) data [before ‘new’ combined H1/ZEUS data]

! with                     :: 

! no cut on Q2        ::

• no FL data included, but shown to be consistent with fit results

• 847 data points

! statistical and systematic uncertainties added in quadrature

! normalization uncertainties not considered

• redefinition of Bjorken x as to go smoothly to photoproduction

The only published direct measurements of the longitudinal structure function

FL(x, Q2) were obtained recently by the H1 [17] and ZEUS [18] Collaborations, and
they are not included in the fit.

All in all, 847 data points are included. Statistical and systematic uncertain-

ties were added in quadrature, and normalization uncertainties not considered. [A
more involved treatment separating uncorrelated and correlated/normalization er-

rors could be done only at the expense of adding one more fitting parameter for
each of the 17 data sets used, thus making the minimization task impossible due to

CPU-time requirements.] Since the minimization algorithms require a large number
of calls to the function we have implemented a parallelization of the numeric code.
Finally, the BK evolution equation including running coupling corrections is solved

using a Runge-Kutta method of second order with rapidity step ∆hy = 0.05, see
further details in [49].

In order to smoothly go to photoproduction, we follow [28] and use the redefini-
tion of the Bjorken variable

x̃ = x

(

1 +
4m2

f

Q2

)

, (3.1)

with mf = 0.14 GeV for the three light flavors we consider in Eq. (2.4).

4. Results

4.1 Fits to F2 and description of FL

The values of the free parameters obtained from the fits to data for the two different
initial conditions, GBW and MV, are presented in Table 1. A partial comparison

between the experimental data [1–16] and the results of the fit for F2(x, Q2) is shown
in Fig. 2.

Initial condition σ0 (mb) Q2
s0 (GeV2) C2 γ χ2/d.o.f.

GBW 31.59 0.24 5.3 1 (fixed) 916.3/844=1.086

MV 32.77 0.15 6.5 1.13 906.0/843=1.075

Table 1: Values of the fitting parameters from the fit to F2(x,Q2) data from [1–16] with

x ≤ 10−2 and for all available values of Q2, 0.045 GeV2 ≤ Q2 ≤ 800 GeV2.

On the other hand, FL(x, Q2) offers an additional constrain on the gluon distri-
bution and is expected to have more discriminating power on different approaches,

particularly in the low-Q2 region [70]. In Fig. 3 we show a comparison between
experimental data [17, 18] and our predictions for FL(x, Q2).

Several comments are in order. First, the two different initial conditions yield
very good fits to F2-data, with χ2/d.o.f. ∼ 1, and almost identical results for FL.
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GBW i.c. falls off exponentially, φGBW ∼ exp (−k2/Q2
s). It is well known that the

solutions of the BK equation, both at LO and including higher order corrections, do
not respect the relatively simple functional forms in Eq. (2.13) and Eq. (2.14). On

the contrary, they can be roughly characterized by an r- and Y -dependent anomalous
dimension, γ(r, Y ), with γ → 1 for r → 0. Clearly a constant value of γ $= 1 would
not respect such condition. However, the main contribution to the DIS cross section

given by Eq. (2.4) originates from the region 1/Q ! r ! 1/Qs. The contribution
from the dilute UV region r < 1/Q is much smaller and therefore we will not consider

additional refinements of the initial conditions in Eq. (2.13) and Eq. (2.14), which
would come at the prize of adding new, spurious parameters into the fit. [Actually,
the results of the fit shows that for the GBW i.c. the preferred value is γ = 1, so it

will be fixed for this initial condition.] Finally, the constant term under the logarithm
in the MV initial condition, e, has been added to regularize the exponent for large

values of r.

2.5 Summary of the theoretical setup and free parameters

In summary, we will calculate the total DIS inclusive and longitudinal structure func-
tions according to the dipole model under the translational invariant approximation
Eq. (2.4). The small-x dependence is completely described by means of the BK equa-

tion including running coupling corrections, Eqs. (2.8-2.10), for which two different
initial conditions GBW and MV, Eqs. (2.13) and (2.14), are considered. All in all,

the free parameters to be fitted to experimental data are:

• σ0 : The total normalization of the cross section in Eq. (2.4).

• Q2
s 0 : The saturation scale of the proton at the highest experimental value of

Bjorken-x included in the fit, x0 = 10−2, in Eqs. (2.13) and (2.14).

• C2: The parameter relating the running of the coupling in momentum space

to the one in dipole size in Eq. (2.11).

• γ : The anomalous dimension of the initial condition for the evolution in Eqs.

(2.13) and (2.14). As discussed in Section 4, in some cases (GBW) γ can be
fixed to 1, obtaining equally good fits to data than when it is considered a free

parameter.

3. Numerical method and experimental data

The experimental data included in the fit to F2(x, Q2) have been collected by the
E665 [1] (FNAL), the NMC [2] (CERN-SPS), the H1 [3–8] (HERA) and the ZEUS

[9–16] (HERA) experimental Collaborations. We have considered data for x ≤ 10−2

and for all available values of Q2, 0.045 GeV2 ≤ Q2 ≤ 800 GeV2.
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! summary [for fit]

• F2 calculated from 

• 4 fit parameters [3 for GBW ic]

! total normalization of cross section [b-integration]

! IR uncertainty in running coupling [from FT]

! initial saturation scale [in ic]

! anomalous dimension [in ic] :: MV only

center-of-mass energies reached in primary collisions are simply unattainable in ac-

celerator experiments in the foreseeable future. In this work we set the ground for a
systematic program oriented to provide parameter-free extrapolations of the dipole

amplitudes (both for proton and nuclei) to very small values of x based on first
principle calculations. Parametrizations of the dipole-proton scattering amplitudes
down to very small x based on the results of this work are publicly available through

simple numeric routines [61].

2. Setup

In this section we briefly review, in a self contained manner, the main ingredients
needed for the calculation of the inclusive and longitudinal DIS structure functions.

2.1 Dipole model

At x ! 1, the inclusive structure function of DIS can be expressed as

F2(x, Q2) =
Q2

4 π2αem
(σT + σL) , (2.1)

where αem is the electromagnetic coupling and σT,L stands for the virtual photon-
proton cross section for transverse (T ) and longitudinal (L) polarizations of the
virtual photon. The longitudinal structure function is obtained by considering only

the longitudinal contribution:

FL(x, Q2) =
Q2

4 π2αem
σL . (2.2)

It is well known that at high energies or small x (where the coherence length of the

virtual photon fluctuation lc ≈ (2mNx)−1 # 0.1/x fm $ RN , with mN and RN

the proton mass and radius respectively), and using light-cone perturbation theory,

the total virtual photon-proton cross section can be written as the convolution of
the light-cone wave function squared for a virtual photon to fluctuate into a quark-

antiquark dipole, |ΨT,L|2, and the imaginary part of the dipole-target scattering
amplitude, N . For transverse and longitudinal polarizations of the virtual photon
one writes [37, 38]:

σT,L(x, Q2) =

∫

1

0

dz

∫

db dr |ΨT,L(z, Q2, r)|2 N (b, r, x) , (2.3)

where z is the fraction of longitudinal momentum of the photon carried by the

quark, r is the transverse separation between the quark and the antiquark and b

the impact parameter of the dipole-target collision (henceforth boldface notation

indicates two-dimensional vectors). The wave functions |ΨT,L|2 for the splitting of
the photon into a qq̄ dipole are perturbatively computable within QED. We refer the
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reader to e.g. [28] for explicit expressions to lowest order in αem. All the information

about the strong interactions – along with all x-dependence – in Eq. (2.3) is encoded
in the dipole-proton scattering amplitude, N (b, r, x). Although this quantity is a

genuinely non-perturbative object, its evolution towards smaller values of x can be
studied perturbatively via the BK equation. On the contrary, its impact parameter
dependence cannot be studied by means of the perturbative BK equation, since it is

governed by long distance, non-perturbative physics. To circumvent this theoretical
limitation we will resort to the translational invariance approximation (also used

in [28]), which regards the proton as homogeneous in the transverse plane. Under
this approximation the virtual photon-proton cross section Eq. (2.3) can be rewritten
as follows:

σT,L(x, Q2) = σ0

∫ 1

0

dz

∫

dr |ΨT,L(z, Q2, r)|2 N (r, Y ) , (2.4)

where r = |r| is the dipole size (the notation v ≡ |v| for all the 2-dimensional vectors

will be also employed throughout the rest of the paper) and σ0 is a dimensionful
constant resulting from the b integration that sets the normalization – this will be
one of the free parameters in our fits. Note that this result relies on the assumption

that a factorized structure of x, r and b dependences remains unchanged through-
out the evolution. In this case the parameter σ0 is related to the t-dependence in

diffractive events, see e.g. [62]. On the other hand, this factorized structure may
be assumed solely for the initial condition, while small-x evolution is performed,

in the translational-invariant approximation, separately for every impact parameter
(as done e.g. for nuclei in [63, 64]). This results in a σ0 varying (increasing) with
energy [65]. We leave this latter aspect for future studies.

2.2 BK equation with running coupling

The primary physical mechanism driving the small-x evolution of the dipole scat-

tering amplitude is the emission of soft gluons off either the quark or the antiquark
in the original dipole. The leading order BK equation resumming the corresponding

αs ln(1/x) contributions to all orders reads

∂N (r, Y )

∂ Y
=

∫

dr1 KLO(r, r1, r2)

× [N (r1, Y ) + N (r2, Y ) −N (r, Y ) −N (r1, Y )N (r2, Y )] , (2.5)

with the evolution kernel given by

KLO(r, r1, r2) =
Nc αs

2π2

r2

r2
1 r2

2

, (2.6)

and r2 = r − r1. Here, Y =ln(x0/x) is the rapidity variable and x0 is the value of x
where the evolution starts, which should be small enough for the dipole model to be
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! fit results
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4.1 Fits to F2 and description of FL

The values of the free parameters obtained from the fits to data for the two different
initial conditions, GBW and MV, are presented in Table 1. A partial comparison

between the experimental data [1–16] and the results of the fit for F2(x, Q2) is shown
in Fig. 2.

Initial condition σ0 (mb) Q2
s0 (GeV2) C2 γ χ2/d.o.f.

GBW 31.59 0.24 5.3 1 (fixed) 916.3/844=1.086

MV 32.77 0.15 6.5 1.13 906.0/843=1.075

Table 1: Values of the fitting parameters from the fit to F2(x,Q2) data from [1–16] with

x ≤ 10−2 and for all available values of Q2, 0.045 GeV2 ≤ Q2 ≤ 800 GeV2.

On the other hand, FL(x, Q2) offers an additional constrain on the gluon distri-
bution and is expected to have more discriminating power on different approaches,

particularly in the low-Q2 region [70]. In Fig. 3 we show a comparison between
experimental data [17, 18] and our predictions for FL(x, Q2).

Several comments are in order. First, the two different initial conditions yield
very good fits to F2-data, with χ2/d.o.f. ∼ 1, and almost identical results for FL.
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Figure 2: Comparison between a selection of experimental data [1–16] and the results

from the fit for F2(x,Q2). Solid red lines correspond to GBW i.c., and dotted blue ones to

MV i.c. The error bars correspond to statistical and systematic errors added in quadrature.

As remarked in the previous Section the main difference between the two initial

conditions is their behavior at small r. In principle this difference is large, but the
fact that the values of γ resulting from the fit are different for the different initial

conditions, should compensate it in a limited region of r. We thus conclude that the
kinematical coverage of the existing experimental data on F2 (and FL) is too small
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! predictions

• F2 and FL extrapolated to LHeC and UHECR kinematical conditions

! near independence on [tested] initial conditions

! first principle approach allows for credible extrapolation

↪→ ‘all’ relevant physics included
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Figure 4: Predictions for F2(x,Q2) (top) and FL(x,Q2) (bottom) versus x, for 10−8 ≤
x ≤ 10−2 and Q2 = 10−1, 1, 10, 102 , 103 GeV2 (lines from bottom to top). Solid black lines

show the results obtained with GBW i.c., and dotted red lines those obtained with MV i.c.

function, is more apparent in FL than in F2. This fact stresses, in our view, the

importance of FL measurements to distinguish different scenarios for the small-x
dynamics: fixed order perturbative QCD, resummation schemes or saturation models
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function, is more apparent in FL than in F2. This fact stresses, in our view, the

importance of FL measurements to distinguish different scenarios for the small-x
dynamics: fixed order perturbative QCD, resummation schemes or saturation models
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! vs. DGLAP

• AAMS F2 and FL cannot be fitted by NLO-DGLAP

• i.e., pseudo-data (for LHeC) generated from AAMS is inconsistent with NLO-
DGLAP 

• differences cannot be absorbed into initial condition
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Figure 3: NNPDF1.2 DGLAP fits (green stars) to pseudodata (red bars) for proton F2

(left plot) and FL (right plot) generated by extrapolation of our fits down to x = 10−6 for
Q2 = 2, 5, 10 and 20 GeV2.

F2 can be well fitted by DGLAP, the best DGLAP fit to pseudotata underestimate FL at
small Q2 and overshoots it at the largest Q2 considered, yielding a large χ2/d.o.f.. One
concludes that a precise experimental determination of FL at the LHeC over a large enough
Q2 range might suffice to pin down the kinematic region where departure between DGLAP
and non-linear (or, maybe, linear resummed small-x evolution) takes place, while F2 does
not offer such discrimination power.
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[5] K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D59 (1999) 014017, hep-ph/9807513.

[6] J. L. Albacete, N. Armesto, J. G. Milhano, C. A. Salgado and U. A. Wiedemann, Phys. Rev. D 71

(2005) 014003 arXiv:0408216 [hep-ph].

[7] J. L. Albacete, N. Armesto, J. G. Milhano and C. A. Salgado, arXiv:0902.1112.

[8] M. Klein et. al., Prospects for a Large Hadron Electron Collider (LHeC) at the LHC, EPAC’08, 11th
European Particle Accelerator Conference, 23- 27 June 2008, Genoa, Italy.

[9] R. D. Ball et al. [NNPDF Collaboration], Nucl. Phys. B 809 (2009) 1 [Erratum-ibid. B 816 (2009)
293], arXiv:0808.1231 [hep-ph].

[10] R. D. Ball et al. [The NNPDF Collaboration], arXiv:0906.1958 [hep-ph].

[11] J. Rojo and F. Caola, arXiv:0906.2079 [hep-ph].

DIS 2009



! current release
 :: AAMS 1.0 ::

IGFAE and USC Phenomenology Group .......

...Phenomenology Group
 

 

Dipole-proton cross section

The imaginary part of the dipole-proton scattering amplitude is available as a FORTRAN routine for

public used. This quantity has been fitted to lepton-proton data using the Balitsky-Kovchegov

evolution equations with running coupling. More details can be found at

J. L. Albacete, N. Armesto, J. G. Milhano and C. A. Salgado, arXiv:0902.1112

Please refer to this publication when using the routine.

In order to compute the dipole cross section, simply multiply the output from the routine by the

corresponding constant values

sigma0=31.59 mb for GBW initial conditions

sigma0=32.77 mb for MV initial conditions

To download the code, please follow this link

 

NEWS

The code has been updated to work properly with some old compilers. If you find any

problem, please, let us know

 

 

 

 

 

 

 

          

IGFAE and USC Phenomenology Group .......

Running coupling BK - IGFAE and USC Phenomenology Group http://www-fp.usc.es/phenom/rcbk/

1 of 1 9/8/09 9:10 AM

http://www-fp.usc.es/phenom/rcbk/

10−12 ≤ x ≤ 10−2

-1
10 1 10

0

0.2

0.4

0.6

0.8

1

N(r)

r )
-1

(GeV

-9
10!, 5

-6
10!, 5

-2
x=10

MV i.c. (dashed)

GBW i.c. (solid)

Figure 5: Dipole scattering amplitude obtained from the fits for the two different initial

conditions, MV (dashed blue) and GBW (solid red) at x = 10−2, 5 ·10−6 and 5 ·10−9 (from

right to left).

and considering just three active flavors. The main novelty of this work with respect
to previous phenomenological analyses is the direct use of the running coupling BK
equation to describe the small-x dependence of the structure functions. We find a

very good agreement with experimental data with only three (four) free parameters
using GBW (MV) initial conditions for the evolution. Available data on FL, not

included in the fit, are also well described. We present predictions for both F2 and
FL in the kinematic regime relevant for future accelerators and ultra high-energy

cosmic rays. We also provide the evolved proton-dipole scattering amplitude down
to values of x = 10−12 through a simple computer code for public use [61]. Further
extension of this work to nuclear targets and hadronic and nuclear collisions is under

way.

In conclusion, we find that the recent progress in our knowledge of non-linear
small-x evolution brings us to an unprecedented level of precision allowing for a direct

comparison with experimental data. This provides a solid theoretical extrapolation
of parton densities towards yet empirically unexplored kinematic regions.
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! also used in ...

• mid-rapidity multiplicities in AA [Albacete PRL 99, 262301]

! preceded present work

• diffractive and forward hadron production in pp [Betemps, Gonçalves and Santana Amaral]

• hadron and direct photon production in ep and pA [Rezaeian and Schafer]

• long range 2-particle rapidity correlation in AA [Dusling, Gelis, Lappi and Venugopalan]

• single inclusive hadron production in pp, pA and AA [Albacete and Marquet]
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FIG. 2: Pseudo-rapidity density of charged particles pro-
duced in Au-Au 0-6% central collisions at

√
sNN = 130 GeV.

Data taken from [14]. The solid lines correspond to Q0 = 1
GeV, m = 0.25 GeV, ∆Y = 1 and x1,2 = (mt/

√
s) e±y. The

modifications to this central value considered are: Upper-left:
m = 0.5 GeV (dashed line) and m = 0 GeV (dashed-dotted
line). Upper-right: ∆Y = 3 (dashed line) and ∆Y = 10
(dashed-dotted line). Lower-left: Q0 = 0.7 GeV, (dashed
line) and Q0 = 1.25 GeV, (dashed-dotted line). Lower-right:
x1,2 =(pt/

√
s) e±y (dashed line).

measured in 0−6% central Au+Au collisions at collision
energies

√
sNN =130 and 200 GeV. The comparison with

data [14], shown in Fig. 2, constrains the free parameters
of the calculation to the ranges: Q0 ∼ 0.75 ÷ 1.25 GeV,
m∼ 0.25 GeV and 3 >∼∆Yev

>∼ 0.5. These ranges deter-
mine the uncertainty bands of the LHC extrapolation in
Fig. 3. The best fits (solid lines in Figs. (2) and (3)) are
obtained with Q0 =1 GeV, m=0.25 GeV and ∆Yev =1.
The normalization constant, C, fixed at

√
sNN = 130

GeV and η = 0, is of order one in all cases. The line
of argument that leads to these values is the following:
First, the energy extrapolation from 130 to 200 GeV at
central rapidities demands a moderate evolution speed
λ∼ 0.2 [6]. From Fig. 1, that condition is met by either
initial saturation scales Q0 ∼ 1 GeV and small evolution
rapidities ∆Yev

<∼ 3 or at asymptotically large rapidi-
ties, ∆Yev ∼ 50, which are kinematically excluded. In
the physically accessible range, the solutions close to the
scaling region, i.e. for ∆Yev ∼ 10, result in too narrow
pseudo-rapidity distributions independently of the value
of Q0, see Fig. 2B. In the pre-asymptotic regime at fixed
∆Yev

<∼ 3, those solutions corresponding to a Q0
<∼ 0.75

GeV yield exceedingly broad distributions (see Fig. 2C).
Thus, the energy and the pseudo-rapidity dependence in-
dependently constrain the parameters of the gluon distri-
butions probed at RHIC to the same ranges. This pro-
vides the baseline for further evolution to LHC energies.
In summary, these results indicate that the nuclear gluon
densities probed at RHIC are in the pre-asymptotic stage

of the evolution. This, together with the large values of
the initial saturation scale required by data suggests that
the saturation of gold nuclei at RHIC energies is not dy-
namically generated by the evolution but, most likely, it
is attributable to the nuclear enhancement factor that
lies at the basis of the MV model, i.e., to the fact that
the number of gluons in the nuclear wave function is large
even at moderate energies due to the spatial superposi-
tion of a large number of nucleon’s gluon fields.
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FIG. 3: Pseudo-rapidity density of charged particles produced
in Au-Au 0-6% central collisions at

√
sNN = 130 and 200

GeV and for Pb-Pb central collisions at
√

sNN = 5.5 TeV.
Data taken from [14]. The upper, central (solid lines) and
lower limits of the theoretical uncertainty band correspond
to (Q0 = 1 GeV, ∆Y = 1), (Q0 = 0.75 GeV, ∆Y = 3) and
(Q0 = 1.25 GeV, ∆Y = 0.5) respectively, with m = 0.25 GeV
in all cases.

The extrapolation to LHC energies, done neglecting
the differences between lead and gold nuclei and pre-
sented in Fig. 3, is now straightforward and completely
driven by the non-linear dynamics of gluon densities. For
central Pb-Pb collisions we get

dNPb−Pb
ch

d2b dη
(
√

sNN =5.5 TeV, η = 0) ∼ 1290÷1480 , (5)

with a central value corresponding to the best fits to
RHIC data ∼ 1390. These values are significantly
smaller than those of other saturation based calculations
[4, 5, 21], ∼ 1700 ÷ 2500, and compatible with the ones
based on studies of the fragmentation region [22]. Such
reduction is due to the lower speed of evolution yielded
by Eq. (1) and to the proper treatment of pre-asymptotic
effects, thereby going beyond the scaling ansatz. Impor-
tantly, the prediction for the midrapidity multiplicity in
Eq. (5) is very robust against changes in the description

2

N =1−S, reads

N (Y =0, r) = 1 − exp

{

−r2Q2
0

4
ln

(

1

rΛ
+ e

)}

, (2)

where Q0 is the initial saturation scale. The constant
e under the logarithm acts as an infrared regulator and
Λ=0.2 GeV.
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FIG. 1: λ =
d ln Q2

s
(Y )

dY
, for Q0 = 0.5, 0.75, 1 and 1.25 GeV

(from top to bottom), and for κ = 0.5 (left) and κ = e−1

(right).

The speed of evolution, λ = d lnQ2
s(Y )/dY , extracted

from numerical solutions of Eq. (1) corresponding to dif-
ferent initial conditions (Q0 =0.5, 0.75, 1 and 1.25 GeV)
is plotted in Fig. 1. For Y >0 the saturation scale is de-
termined by the condition N (Y, r = 1/Qs(Y )) = κ, with
κ=0.5 (left plot) and κ=e−1 (right plot). These results
show two remarkable features of the solutions.

First, the running coupling corrections render the en-
ergy dependence of the saturation scale compatible with
the one indicated by the analysis of experimental data.
Thus, the λ values in Fig. 1 are slightly smaller than the
one extracted from fits to HERA data, λ=0.288 (except,
perhaps, for Q0

<∼ 0.5 GeV at small rapidities). On av-
erage, they are compatible with λ=0.2 reported in [6] as
the optimal value to reproduce the energy and rapidity
dependence of the multiplicities in Au-Au collisions at
the highest RHIC energies. Second, they reveal the exis-
tence of two very distinct kinematical regimes: At small
pre-asymptotic rapidities the evolution is strongly depen-
dent on the initial conditions. In particular, denser sys-
tems, i.e. those associated to larger values of Q0, evolve
more slowly due to the relative enhancement of non-linear
effects with respect to more dilute systems. Such depen-
dence on the nature of the evolved system is completely
washed out by the evolution and, at high enough rapidi-
ties, all the solutions reach a common speed of evolution.
The onset of this universal scaling regime is reflected in
Fig. 1 by the convergence of all the individual trajectories
into a single curve for Y >∼ 15. The studies of more exclu-
sive properties of the solutions carried out in [12, 17] sug-
gest that the full scaling regime is reached at even larger

rapidities, Y >∼ 80. Moreover, sizable scaling violations
have been detected in HERA data [19] and in particle
spectra in d-Au collisions at RHIC [20]. These observa-
tions rise the question of whether the scaling ansatz that
connects HERA and RHIC phenomenology through the
universality property of the solutions is an adequate one
at presently available energies.

In analogy to [4, 5], we calculate the pseudo-rapidity
density of charged particles produced in nucleus-nucleus
collisions within the kt-factorization framework via:

dNch

dy d2b
= C

4πNc

N2
c − 1

∫

d2pt

p2
t

∫ pt

d2kt αs(Q)

×ϕ

(

x1,
|kt + pt|

2

)

ϕ

(

x2,
|kt − pt|

2

)

, (3)

where pt and y are the transverse momentum and ra-
pidity of the produced particle, x1,2 = (pt/

√
s) e±y, Q =

0.5 max{|pt ± kt|} and b the impact parameter of the col-
lision. The lack of impact parameter integration in this
calculation and the gluon to charged hadron ratio are
accounted for by the constant C, which sets the nor-
malization. The nuclear unintegrated gluon distribution
entering Eq. (3) is related to the inclusive gluon distri-

bution, ϕ(x, k) ∝ d(xG(x,k2))
d2k d2b

, and is given in terms of the
dipole scattering amplitude evolved according to Eq. (1):

ϕ(Y, k) =

∫

d2r

2π r2
exp{i r · k}N (Y, r) , (4)

The relation between the evolution variable in Eq. (1)
and Feynman-x of the produced particle is taken to be
Y = ln(0.05/x1,2) + ∆Yev . Since the relevant values of
Bjorken-x probed at mid-rapidities and

√
sNN = 130

GeV at RHIC are estimated to be ∼ 0.1 ÷ 0.01, the
free parameter ∆Yev controls the extent of evolution
undergone by the nuclear gluon densities resulting of
Eq. (1) prior to comparison with RHIC data. Similar
to [4], large-x effects have been modelled by replacing
ϕ(x, k) → ϕ(x, k)(1 − x)4. The running of the strong
coupling, evaluated according to the one loop QCD ex-
pression, is regularized in the infrared by freezing it to
a constant value αfr = 1 at small momenta. Finally, in
order to compare Eq. (3) with experimental data it is nec-
essary to correct the difference between rapidity, y, and
the experimentally measured pseudo-rapidity, η. This is
achieved by introducing an average hadron mass, m. The
variable transformation, y(η, pt, m), and its correspond-
ing Jacobian are given by Eqs.(25-26) in [3]. Corrections
to the kinematics due to the hadron mass are also consid-
ered by replacing p2

t → m2
t =p2

t +m2 in the evaluation of
x1,2. Remarkably, the optimal value found in comparison
with data, m ∼ 0.25 GeV, see Fig. 2A, is in good quanti-
tative agreement with the hadrochemical composition of
particle production at RHIC.

With this set up we find a remarkably good agreement
with the pseudo-rapidity densities of charged particles

2

N =1−S, reads

N (Y =0, r) = 1 − exp

{

−r2Q2
0

4
ln

(

1

rΛ
+ e
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where Q0 is the initial saturation scale. The constant
e under the logarithm acts as an infrared regulator and
Λ=0.2 GeV.
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FIG. 1: λ =
d ln Q2

s
(Y )

dY
, for Q0 = 0.5, 0.75, 1 and 1.25 GeV

(from top to bottom), and for κ = 0.5 (left) and κ = e−1

(right).

The speed of evolution, λ = d lnQ2
s(Y )/dY , extracted

from numerical solutions of Eq. (1) corresponding to dif-
ferent initial conditions (Q0 =0.5, 0.75, 1 and 1.25 GeV)
is plotted in Fig. 1. For Y >0 the saturation scale is de-
termined by the condition N (Y, r = 1/Qs(Y )) = κ, with
κ=0.5 (left plot) and κ=e−1 (right plot). These results
show two remarkable features of the solutions.

First, the running coupling corrections render the en-
ergy dependence of the saturation scale compatible with
the one indicated by the analysis of experimental data.
Thus, the λ values in Fig. 1 are slightly smaller than the
one extracted from fits to HERA data, λ=0.288 (except,
perhaps, for Q0

<∼ 0.5 GeV at small rapidities). On av-
erage, they are compatible with λ=0.2 reported in [6] as
the optimal value to reproduce the energy and rapidity
dependence of the multiplicities in Au-Au collisions at
the highest RHIC energies. Second, they reveal the exis-
tence of two very distinct kinematical regimes: At small
pre-asymptotic rapidities the evolution is strongly depen-
dent on the initial conditions. In particular, denser sys-
tems, i.e. those associated to larger values of Q0, evolve
more slowly due to the relative enhancement of non-linear
effects with respect to more dilute systems. Such depen-
dence on the nature of the evolved system is completely
washed out by the evolution and, at high enough rapidi-
ties, all the solutions reach a common speed of evolution.
The onset of this universal scaling regime is reflected in
Fig. 1 by the convergence of all the individual trajectories
into a single curve for Y >∼ 15. The studies of more exclu-
sive properties of the solutions carried out in [12, 17] sug-
gest that the full scaling regime is reached at even larger

rapidities, Y >∼ 80. Moreover, sizable scaling violations
have been detected in HERA data [19] and in particle
spectra in d-Au collisions at RHIC [20]. These observa-
tions rise the question of whether the scaling ansatz that
connects HERA and RHIC phenomenology through the
universality property of the solutions is an adequate one
at presently available energies.

In analogy to [4, 5], we calculate the pseudo-rapidity
density of charged particles produced in nucleus-nucleus
collisions within the kt-factorization framework via:
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where pt and y are the transverse momentum and ra-
pidity of the produced particle, x1,2 = (pt/

√
s) e±y, Q =

0.5 max{|pt ± kt|} and b the impact parameter of the col-
lision. The lack of impact parameter integration in this
calculation and the gluon to charged hadron ratio are
accounted for by the constant C, which sets the nor-
malization. The nuclear unintegrated gluon distribution
entering Eq. (3) is related to the inclusive gluon distri-

bution, ϕ(x, k) ∝ d(xG(x,k2))
d2k d2b

, and is given in terms of the
dipole scattering amplitude evolved according to Eq. (1):
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exp{i r · k}N (Y, r) , (4)

The relation between the evolution variable in Eq. (1)
and Feynman-x of the produced particle is taken to be
Y = ln(0.05/x1,2) + ∆Yev . Since the relevant values of
Bjorken-x probed at mid-rapidities and

√
sNN = 130

GeV at RHIC are estimated to be ∼ 0.1 ÷ 0.01, the
free parameter ∆Yev controls the extent of evolution
undergone by the nuclear gluon densities resulting of
Eq. (1) prior to comparison with RHIC data. Similar
to [4], large-x effects have been modelled by replacing
ϕ(x, k) → ϕ(x, k)(1 − x)4. The running of the strong
coupling, evaluated according to the one loop QCD ex-
pression, is regularized in the infrared by freezing it to
a constant value αfr = 1 at small momenta. Finally, in
order to compare Eq. (3) with experimental data it is nec-
essary to correct the difference between rapidity, y, and
the experimentally measured pseudo-rapidity, η. This is
achieved by introducing an average hadron mass, m. The
variable transformation, y(η, pt, m), and its correspond-
ing Jacobian are given by Eqs.(25-26) in [3]. Corrections
to the kinematics due to the hadron mass are also consid-
ered by replacing p2

t → m2
t =p2

t +m2 in the evaluation of
x1,2. Remarkably, the optimal value found in comparison
with data, m ∼ 0.25 GeV, see Fig. 2A, is in good quanti-
tative agreement with the hadrochemical composition of
particle production at RHIC.

With this set up we find a remarkably good agreement
with the pseudo-rapidity densities of charged particles
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! new release [AAMQS] :: very soon

• proton

! include H1/ZEUS combined data

↪→ fit reduced cross-section directly [much better, extraction indep.]

! include F2charm and F2beauty data

! include heavy quarks in calculation

! improved treatment of running coupling

↪→ matched over mass thresholds

! NO EXTRA PARAMETERS

• nuclei

! direct fit of nuclear DIS data with proton parameters [2 nuclear params]

Q2
s,A = c Aδ Q2

s,p



! harder...

• impact parameter dependence [for both nuclei and proton]

!access to diffractive and non-inclusive observables

!centrality dependence for AA

• speculative...

!extract integrated [standard] gluon distribution

↪→ no unique meaningful procedure



! abstract


• small-x effects cannot be neglected at the LHC [and more so for nuclei]

• DGLAP is not an appropriate tool to address small-x physics

• useful, phenomenologically usable, parametrizations can be obtained within kt 
factorized approach

• they are easy to use...



! backups



! FL

• FL data not included in the fit

! consistently described 
[error bars too large for 
meaningful statement]
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Figure 3: Comparison between experimental data from the H1 [17] (upper plot) and

ZEUS [18] (lower plot) Collaborations and the predictions of our model for FL(x,Q2). Red

solid lines and open squares correspond to GBW i.c., and blue dotted lines and open circles

to MV i.c. The theoretical results have been computed at the same 〈x〉 as the experimental

data, and then joined by straight lines. The error bars correspond to statistical and sys-

tematic errors added in quadrature for those data coming from [17], while they correspond

to the error quoted for the unconstrained fit for those data coming from [18].

to allow a discrimination of the different UV behaviors of the two employed i.c.

Second, the fits using GBW i.c. and obtained by letting γ vary as a free pa-
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center-of-mass energies reached in primary collisions are simply unattainable in ac-

celerator experiments in the foreseeable future. In this work we set the ground for a
systematic program oriented to provide parameter-free extrapolations of the dipole

amplitudes (both for proton and nuclei) to very small values of x based on first
principle calculations. Parametrizations of the dipole-proton scattering amplitudes
down to very small x based on the results of this work are publicly available through

simple numeric routines [61].

2. Setup

In this section we briefly review, in a self contained manner, the main ingredients
needed for the calculation of the inclusive and longitudinal DIS structure functions.

2.1 Dipole model

At x ! 1, the inclusive structure function of DIS can be expressed as

F2(x, Q2) =
Q2

4 π2αem
(σT + σL) , (2.1)

where αem is the electromagnetic coupling and σT,L stands for the virtual photon-
proton cross section for transverse (T ) and longitudinal (L) polarizations of the
virtual photon. The longitudinal structure function is obtained by considering only

the longitudinal contribution:

FL(x, Q2) =
Q2

4 π2αem
σL . (2.2)

It is well known that at high energies or small x (where the coherence length of the

virtual photon fluctuation lc ≈ (2mNx)−1 # 0.1/x fm $ RN , with mN and RN

the proton mass and radius respectively), and using light-cone perturbation theory,

the total virtual photon-proton cross section can be written as the convolution of
the light-cone wave function squared for a virtual photon to fluctuate into a quark-

antiquark dipole, |ΨT,L|2, and the imaginary part of the dipole-target scattering
amplitude, N . For transverse and longitudinal polarizations of the virtual photon
one writes [37, 38]:

σT,L(x, Q2) =

∫

1

0

dz

∫

db dr |ΨT,L(z, Q2, r)|2 N (b, r, x) , (2.3)

where z is the fraction of longitudinal momentum of the photon carried by the

quark, r is the transverse separation between the quark and the antiquark and b

the impact parameter of the dipole-target collision (henceforth boldface notation

indicates two-dimensional vectors). The wave functions |ΨT,L|2 for the splitting of
the photon into a qq̄ dipole are perturbatively computable within QED. We refer the

– 5 –



! saturation momentum, geometric scaling

• large [perturbative] saturation scale for forward region in pp at the LHC

• geometric scaling in DGLAP ?? [no scale]
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Figure 6: Proton saturation scale, Q2
s(x) versus ln(10−2/x) extracted from the solutions

in Fig 5 by the condition N (r = 1/Qs(x), x) = 1 − exp [−1/4]. The labeling follows the

one in Fig. 5.
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[70].

4.3 Parametrizations of the dipole-proton scattering amplitude

With all the uncertainties associated to the initial condition for the evolution fixed by

the fit to F2 presented in the previous sections, we can now evolve the proton-dipole
scattering amplitude to much smaller values of x. Such extrapolation is completely

driven by small-x evolution including running coupling corrections and can be used
to calculate several different observables relevant for the LHC and cosmic ray physics.

We have performed the evolution down to x = 10−12. The resulting proton-dipole
scattering amplitude is plotted in Fig. 5 for three values of x (x = 10−2, 5 · 10−6

and 5 · 10−9) both for MV and GBW i.c. and has been made public through simple

fortran routines in [61]. From the solutions of the evolution in Fig. 5 we can extract
the proton saturation scale Qs(x) through the condition

N (r = 1/Qs(x), x) = κ ∼ O(1) . (4.1)

It is important to note that the values of Qs(x) presented in Fig. 6 are dependent

on the choice of κ in Eq. (4.1). Following the original GBW prescription we take

κ = 1 − exp [−1/4] ∼ 0.22 . (4.2)

Different choices of κ can affect the numerical value of Qs(x) by a factor ∼ 2 ÷ 3.
Keeping in mind such ambiguity in its extraction from the numerical solutions of the

evolution equation, we can estimate the value of the proton saturation scale at LHC
energies. Using 2 → 1 kinematics to compute the smallest value of Bjorken-x probed

in proton-proton collisions, x = (2 M/
√

s)e−y, where M is the invariant mass of the
produced system (one hadron, dileptons,...),

√
s = 14 TeV is the collision energy

and y the rapidity of the produced particle, we get (fixing M = 1 GeV) that the
saturation scale of the backward-moving proton at the LHC at rapidities y = 0, 3
and 6 is Q2

s % 0.55÷0.7, 1.3÷1.7 and 3÷4 GeV2 respectively. Such values are large

enough to suggest that saturation effects in proton-proton collisions at the LHC may
be detectable, specially at forward rapidities.

5. Conclusions

We presented a new approach towards a systematic quantification of parton distri-
butions at small-x directly in terms of non-linear QCD evolution equations. This
approach has become feasible thanks to the recent calculation of the running cou-

pling corrections to the BK equation. In this work we performed a global fit to the
available experimental data for F2(x, Q2) measured in electron-proton scattering for

x ≤ 10−2 and all values of Q2. The calculation of the structure functions F2 and
FL is done within the dipole model under the translational invariant approximation
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to calculate several different observables relevant for the LHC and cosmic ray physics.

We have performed the evolution down to x = 10−12. The resulting proton-dipole
scattering amplitude is plotted in Fig. 5 for three values of x (x = 10−2, 5 · 10−6

and 5 · 10−9) both for MV and GBW i.c. and has been made public through simple

fortran routines in [61]. From the solutions of the evolution in Fig. 5 we can extract
the proton saturation scale Qs(x) through the condition

N (r = 1/Qs(x), x) = κ ∼ O(1) . (4.1)

It is important to note that the values of Qs(x) presented in Fig. 6 are dependent

on the choice of κ in Eq. (4.1). Following the original GBW prescription we take

κ = 1 − exp [−1/4] ∼ 0.22 . (4.2)

Different choices of κ can affect the numerical value of Qs(x) by a factor ∼ 2 ÷ 3.
Keeping in mind such ambiguity in its extraction from the numerical solutions of the

evolution equation, we can estimate the value of the proton saturation scale at LHC
energies. Using 2 → 1 kinematics to compute the smallest value of Bjorken-x probed

in proton-proton collisions, x = (2 M/
√

s)e−y, where M is the invariant mass of the
produced system (one hadron, dileptons,...),

√
s = 14 TeV is the collision energy

and y the rapidity of the produced particle, we get (fixing M = 1 GeV) that the
saturation scale of the backward-moving proton at the LHC at rapidities y = 0, 3
and 6 is Q2

s % 0.55÷0.7, 1.3÷1.7 and 3÷4 GeV2 respectively. Such values are large

enough to suggest that saturation effects in proton-proton collisions at the LHC may
be detectable, specially at forward rapidities.

5. Conclusions

We presented a new approach towards a systematic quantification of parton distri-
butions at small-x directly in terms of non-linear QCD evolution equations. This
approach has become feasible thanks to the recent calculation of the running cou-

pling corrections to the BK equation. In this work we performed a global fit to the
available experimental data for F2(x, Q2) measured in electron-proton scattering for

x ≤ 10−2 and all values of Q2. The calculation of the structure functions F2 and
FL is done within the dipole model under the translational invariant approximation
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