Search for gluon saturation effects in p-Pb collisions at the LHC with ALICE

Workshop on Nuclear Parton Distribution Functions, Annecy February 22th 2010

Cynthia Hadjidakis

- Small-x physics and gluon saturation effects: the Colour Glass Condensate
- Study of heavy flavour production at the LHC with the ALICE Forward Muon Spectrometer in p-Pb collisions

High energy physics and saturation effects

Small-*x* rise of xg(x): saturation of the gluon density

High energy physics and saturation effects

Nucleon structure: x and Q² evolution

 $Q_{s}^{2}(x)$ defines the scale below which the gluon density saturates

Colour Glass Condensate

$$Q_{s}^{2} \propto x^{-0.3} A^{1/3}$$
 → saturation for low x (high $\sqrt{s=1/x}$), large A
 $\rightarrow Q_{s,LHC}^{2} = 3 Q_{s,RHIC}^{2}$
 $\rightarrow Q_{s,Pb}^{2} = 6 Q_{s,p}^{2}$
if 2→1 kinematics (gg→QQbar) → $Q_{s}^{2}(y=3) = 4 Q_{s}^{2}(y=0)$

CGC as initial state of heavy ion collisions

CGC framework can describe heavy ion collisions up to $\tau = 1/Q_s$

Understanding initial state will help to separate hot from cold nuclear matter effects in heavy ion collisions \rightarrow p-A collisions

d-Au collisions at RHIC

At forward rapidity and low p_T (small-*x* partons probed in the nucleus), R_{d+Au} decreases \rightarrow not explained by pQCD NLO calculations and shadowing \rightarrow signature for a possible onset of gluon saturation at RHIC energies

But... $Q_s^2 = 1-2 \text{ GeV}^2$ (*a*) RHIC: saturation regime close to non perturbative regime

Search for saturation effects at LHC with ALICE

ALICE requirements for the forthcoming 5 years at LITC				ICE PPR Vol. 1
Collision system	√s _{NN} (TeV)	L_0 (cm ⁻² s ⁻¹)	Run time (s)	σ _{geom} (b)
р-р	7 / 14	3.10 ³⁰ *	5.107	0.07
Pb-Pb	2.76 / 5.5	5.10 ²⁶	2.106	7.7
p-Pb	8.8	1.10 ²⁹	1.106	1.9
Ar-Ar	6.3	1.10 ²⁹	1.10 ⁶	2.7
$(*ATLAS/CMSL_{2} = 10^{34} - LHChL_{2} = 10^{32})$				

 $(*ATLAS/CMS L_0 = 10^{34} - LHCb L_0 = 10^{32})$

- p-Pb and Pb-Pb collisions at LHC ($Q_s^2 = 3-5 \text{ GeV}^2$): definitive tests of the CGC picture
- p-Pb better system to test the saturation regime (no Quark Gluon Plasma)
- Understanding of cold nuclear matter effect in pPb is crucial to understand QGP probes in Pb-Pb collisions
- Many observables for studying saturation effects

ALICE requirements for the forthcoming 5 years at IUC

In p-p, p-Pb and Pb-Pb: multiplicities, R_{pA} and R_{AA} for forward and/or low p_T production, long range correlation in rapidity, ...

\rightarrow Forward heavy flavour production in p-p and p-Pb

p-Pb collisions at LHC

• p-Pb collisions, LHC single magnet ring with two-beam aperture imposes:

 $\sqrt{s} = \sqrt{(Z_1 Z_2/A_1 A_2)} \times 2p_p \text{ TeV} \rightarrow \text{for } p\text{-Pb} \ \sqrt{s} = 8.8 \text{ TeV}$

 $\Delta y = 0.5 \ln (Z_1 A_2/Z_2 A_1) \rightarrow \text{for } p-Pb = 0.47$

 \rightarrow y- and \sqrt{s} -dependence extrapolation needed when comparing p-Pb / p-p

• Running with d-Pb would be better...

 $\Delta y = 0.1 \rightarrow$ almost same acceptance than symmetric systems Nucleon probe (average of proton and neutron)

...but requires a LHC upgrade (additional beam injection source) not foreseen

ALICE experiment

CGC model for forward heavy flavour production

Fujii, Gelis, Venugopalan Nucl.Phys.A780,2006

$$\frac{dN_{Q\overline{Q}}^{pPb}}{dyd^{2}\boldsymbol{p}_{t}} = f_{g}^{(p)}(x_{1}) \otimes \varphi(x_{2}) \otimes \frac{dN_{gg \to Q\overline{Q}}^{sat}}{dyd^{2}\boldsymbol{p}_{t}}$$

♦ $gg \rightarrow QQbar production$ evaluated in a strong background colour field (multiple scattering effects)

In p-p (p-Pb) at forward rapidity \rightarrow partons probed: $x_2 \ll x_1$

 \blacklozenge projectile 1 = dilute system = $f_g(x_1)$ CTEQ6 gluon p.d.fs

• projectile 2 = dense system = $\varphi(x_2)$ CGC gluon distr. in a saturated nucleus

- initial condition @ x₀ = 10⁻² using McLerran-Venugopalan (MV) model
 ▶ multiple scattering effect due to dense system (both initial gluons and QQbar pair).
 ▶ saturation scale (Q²_s) determined @ x₀ = 10⁻²

- small-*x* evolution according to Balitsky-Kovchegov (BK) equation (valid for $x < x_0$)

Model parameter estimation

- saturation scale Q²_s:
 - evaluated from $dN^{h+/-}/dy|_{y=0}$ @ RHIC in Au-Au collisions: $Q_s^2_{,Au} = 2 \text{ GeV}^2$

Krasnitz, Nara, Venugopalan Nucl.Phys.A727:427-436,2003.

- $Q_{s,A}^2$ is only A-dependent
 - A-dependence from the color charge density: $g^4 \mu_B^2 = (B/A)^{1/3} g^4 \mu_A^2$ with $g^4 \mu_A^2 \propto Q_{s,A^2}/(1+\ln(Q_{s,A^2}/\Lambda^2_{QCD}))$
 - ► Q_{s,A^2} can be defined for any A. In particular, $Q_{s,p^2} = 0.17 \text{ GeV}^2$

 \rightarrow constant thickness of projectile 2 assumed \equiv most central collisions

- quark mass $m_c = 1.2 \text{ GeV}$
- coupling constant α_s ... not running but fixed: effective way to account for NLO correction in α_s
 - from HERA data (y-dependence of F_2): $\alpha_s = 0.15$

Open heavy flavour at forward rapidity

Open heavy flavour production at forward rapidity

A. Charpy et al. ALICE-INT-2009-043

• SHAD = PYTHIA-MNR tuned to NLO pQCD with nuclear shadowing (EKS98)

 \rightarrow Gluon saturation effects important for c-quark at p_T<4 GeV/c

Fragmentation and decay into muons

 \rightarrow Fragmentation and decay into muons soften the p_T spectrum

 \rightarrow Gluon saturation effects (30%) for muons from c-quark at p_T<2 GeV/c

Single muon detection in the Muon Spectrometer

Forward Muon Spectrometer

 $-4 < \eta < -2.5$ p > 4 GeV/c (muon absorber and filter)

 \rightarrow Large background contribution from π and K at $p_T < 1.5$ GeV/c

Open heavy flavour in the Muon Spectrometer \rightarrow challenging channel to study saturation effect

J/ψ production at forward rapidity

Why J/ψ ?

- More suppressed in p-Pb collisions (more sensitive to multiple scattering)
- Simpler to measure experimentally

J/ψ production at forward rapidity

• projectile 1 = dilute system = $f_g(x_1)$ CTEQ6 gluon p.d.fs + \mathbf{k}_T kick

Model for J/ ψ production

Colour Evaporation Model $\frac{dN_{J/\psi}}{dYd^2\boldsymbol{P}_{\perp}} \underset{CEM}{=} F_{J/\psi} \int_{4m_c^2}^{4m_D^2} dM^2 \frac{dN_{\text{ccbar}}}{dYd^2\boldsymbol{P}_{\perp}dM^2}$ р-р 10² p-p p-Pb dN/dp_T (a.u.) 12 14 p_T (GeV/c) 12

Quarkonium production mechanism not well understood... and does not cancel out in nuclear modification ratio

 J/ψ assumed to be formed outside of the nucleus (LHC energy) \rightarrow no absorption effect

R_{p-Pb} for J/ ψ production

Shadowing model Smbat Grigoryan

- cross section: energy dependence from CEM model and p_T dependence from a parameterization from CDF data
- shadowing: EKS98 and LO kinematics (gg \rightarrow J/ ψ) for p_T-dependence: $x_{1,2} = m_t/\sqrt{s} \exp(\pm y)$

... including some of the model uncertainties

- Shadowing model: EPS08 used as lower bound of EKS98
- CGC model: at low p_T main uncertainty = k_T dependence of p.d.f for projectile 1

 R_{p-Pb} in Muon Spectrometer acceptance: CGC model = [0.40-0.55] / Shadowing = [0.55-0.75]Sharper p_T-dependence for CGC model but large model uncertainties

J/ψ measurement at forward rapidity

 \rightarrow invariant mass fit allows an estimation of the background $\rightarrow J/\psi$ reconstructed in the Muon Spectrometer down to low $p_T \approx 0$

 J/ψ measurement promising channel

Expected yield in p-Pb collisions

2 muons detection efficiency (60%) with 1 GeV/c p_T trigger

 \rightarrow for one month of p-Pb collisions: $N_{J/\psi} = 1.5 \ 10^6$ and $N_Y = 1.4 \ 10^4$

R_{p-Pb} y-dependence: central barrel and Pb-p collisions

In p-Pb, at forward rapidity, saturation effect dominates Cronin effect (multiple scattering of gluons and of QQbar pair).

Cronin effect may be visible at mid-rapidity (central barrel y=[-0.9,0.9] with J/ $\psi \rightarrow e^+e^-$), and backward rapidity (Pb-p collisions in the Muon Spectrometer)

R_{p-Pb} y-dependence: central barrel and Pb-p collisions

In p-Pb, at forward rapidity, saturation effect dominates Cronin effect (multiple scattering of gluons and of QQbar pair).

Cronin effect may be visible at mid-rapidity (central barrel y=[-0.9,0.9] with J/ $\psi \rightarrow e^+e^-$), and backward rapidity (Pb-p collisions in the Muon Spectrometer)

 \rightarrow CGC model not valid in Pb-p collisions in the Muon Spectrometer acceptance (at y = 4, x_A = 10⁻² and x_p = 10⁻⁵): need a more complex model with projectile and target described by the CGC

 \rightarrow Expected yield in Pb-p (SHAD-EKS98): 20% more J/ ψ / 6% more Y in Pb-p than p-Pb in the Muon Spectrometer acceptance: 10⁶s to share between p-Pb and Pb-p collisions

Overview

Small-*x* physics

- Colour Glass Condensate framework developed to describe high density gluon system
- Onset of gluon saturation seen in the forward region @ RHIC
- RHIC \rightarrow LHC with \sqrt{s} 30 times larger : definitive tests of the CGC picture

Heavy flavour production at the LHC with the ALICE Forward Muon Spectrometer as a tool to measure gluon saturation effect in p-p and p-Pb collisions

- Single muon production challenging measurement
- J/ ψ production promising measurement

First data for ALICE in p-p collisions @ $\sqrt{s} = 900 \text{ GeV}$

p-p collisions in 2010 (a) $\sqrt{s} = 7$ TeV for few months of data taking

- large statistics up to $p_T = 12 \text{ GeV/c}$ for single muons
- 10k J/ ψ up to $p_T = 10 \text{ GeV/c}$

First p-p collisions @ 900 GeV !!

-i<u>pn</u>

First p-p collisions @ 900 GeV !!

First p-p collisions @ 900 GeV !!

Forthcoming p-p collisions @ 7 TeV

Statistics and p_T reach at 7 TeV for 3 months of data taking with $L_0 = 2.3 \ 10^{29} \text{ cm}^{-2}\text{s}^{-1}$ and $\epsilon_{LHC} = 12\%$

large statistics up to $p_T \sim 12 \text{ GeV/c}$

10k J/ ψ expected reach in p_T ~ 10 GeV/c

LHC calendar

2010 - 2011 p_p = 3.5 TeV (p-p \sqrt{s} = 7 TeV / Pb-Pb \sqrt{s} = 2.76 TeV) Shutdown end of 2011 to step up in beam energy

Back-up slides

Multiplicity measurements at RHIC

Estimation of $Q^{2}_{s,Au}$ @ $\sqrt{s} = 200 \text{ GeV}$

- hadron multiplicity $dN^{hadron}/dy|_{\eta=0} \simeq 1100$
- hadronic transverse energy $E_T \approx 500 \text{ GeV}$

 $\rightarrow Q^{2}_{s,Au} = 2 \text{ GeV}^{2}$

Krasnitz, Nara, Venugopalan Nucl.Phys.A727:427-436,2003. Karzeev, Levin, Nardi

EKS98 (EPS09) vs EPS08

J/ψ 0.5 - SHAD EKS98 SHAD EPS08 - CGC model ⁰-5 -3 .2 -1 У

EKS98 (EPS09) vs EPS08

Eskola et al.,2009

EPS09 close to EKS98 at low x **EPS09** uncertainties estimated! EPS08 (forward RHIC data included) \approx lower bound of EPS09

EPS08 shadowing for R_{Pb-p} at the numerical level

January 28th 2010

29

Single muon detection in the Muon spectrometer

Forward muon spectrometer $-4 < \eta < -2.5$ p > 4 GeV/c (muon absorber and filter) muon trigger efficiency decreases at low p_T

- Detector effects (y-shift in Pb-p leads to different momentum cut for a given p_T and y)
- \rightarrow effects from gluon saturation less visible at low p_T
- Also, not simulated here, large background contribution from π and K at $p_T < 1.5$ GeV/c

Open heavy flavour in the muon spectrometer \rightarrow challenging channel to study saturation effect

uncertainty roughly estimated $Q_{s^2,Au} = [2.0-2.5] \text{ GeV}^2$

- saturation scale Q²_s: in MV model, defined at x₀=0.01.
 evaluated from dN^{h+/-}/dy|_{y=0} @ RHIC Q_{s²,Au} = 2 GeV² uncertainty roughly estimated Q_{s²,Au} = [2.0-2.5] GeV²
 quark mass m_c = 1.2-1.5 GeV
 - coupling constant α_s ... not running but fixed in order to reproduce the ydependence of F₂ HERA data (effective way to account for NLO correction in α_s)
 - from HERA data: $\alpha_s = [0.15-0.2]$

R_{p-Pb} sensitivity to k_t-distribution of the gluon

