

Université de Mons

Υ production in dAu and AuAu collisions at RHIC

N. Matagne University of Mons

Workshop Annecy nPDF February 22, 2010

In collaboration with E. G. Ferreiro, F. Fleuret, J. P. Lansberg and A.

Rakotozafindrabe

N. Matagne (University of Mons)

↑ production in dAu and AuAu collisions

Outline

- Introduction and motivations
- 2 Experimental situation
- On the kinematics of Υ production
- The Glauber Monte Carlo
- 5 Results for dAu collisions
- 6 Results for AuAu collisions
- Conclusions and perspectives

• Extend to Υ the study of CNM effects (shadowing + absorption) on production of quarkonia

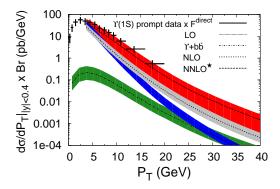
A 🖓

- Extend to Υ the study of CNM effects (shadowing + absorption) on production of quarkonia
- Glauber Monte Carlo model to simulate dAu and AuAu collisions at RHIC

- Extend to Υ the study of CNM effects (shadowing + absorption) on production of quarkonia
- Glauber Monte Carlo model to simulate dAu and AuAu collisions at RHIC
- Two main production schemes (1 ightarrow 2, 2 ightarrow 2)

< 同 ト く ヨ ト く ヨ ト

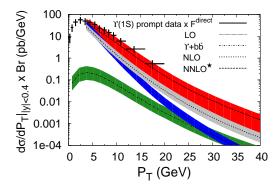
- Extend to Υ the study of CNM effects (shadowing + absorption) on production of quarkonia
- Glauber Monte Carlo model to simulate dAu and AuAu collisions at RHIC
- Two main production schemes $(1 \rightarrow 2, 2 \rightarrow 2)$
- Comparison of three differents shadowing parametrisations


くほと くほと くほと

- Extend to Υ the study of CNM effects (shadowing + absorption) on production of quarkonia
- Glauber Monte Carlo model to simulate dAu and AuAu collisions at RHIC
- Two main production schemes $(1 \rightarrow 2, 2 \rightarrow 2)$
- Comparison of three differents shadowing parametrisations
- Three absorption cross sections

くほと くほと くほと

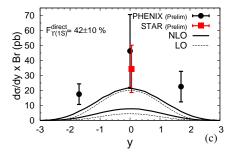
Experimental situation


Results at 1.8 TeV

CSM describes well the data at NNLO*

Experimental situation

Results at 1.8 TeV



- CSM describes well the data at NNLO*
- However LO CSM is sufficient to describe low pT data

Experimental situation

S. J. Brodsky and J. P. Lansberg, arXiv:0908.0754 [hep-ph].

Results at 200 GeV

- Upper dashed line, $m_{\Upsilon} = 4.5$ GeV,
- Lower dashed line, $m_{\Upsilon} = 5.0$ GeV,

 $m_{\Upsilon} = 4.5$ GeV, taken in the following plots

If $\mathcal{F}_{g}^{A}(x, \vec{r}, z, \mu_{f})$ gives the distribution of a gluon of mom. fract. x at a position \vec{r}, z in a nucleus A, the differential cross-section reads:

$$\frac{d\sigma_{AB}}{dy \, dP_T \, d\vec{b}} =$$

 $2 \rightarrow 1$ kinematics with intrinsic $\textit{p}_{\mathcal{T}}$

 $2 \rightarrow 2$ kinematics with extrinsic $\textit{p}_{\mathcal{T}}$

If $\mathcal{F}_{g}^{A}(x, \vec{r}, z, \mu_{f})$ gives the distribution of a gluon of mom. fract. x at a position \vec{r}, z in a nucleus A, the differential cross-section reads:

$$\frac{d\sigma_{AB}}{dy \, dP_T \, d\vec{b}} =$$

 $\mathbf{2}
ightarrow \mathbf{1}$ kinematics with intrinsic p_T

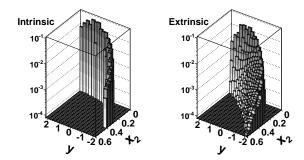
 $\int d\vec{r}_A dz_A dz_B$ $\times \mathcal{F}_g^A(x_1^0, \vec{r}_A, z_A, \mu_f) \mathcal{F}_g^B(x_2^0, \vec{r}_B, z_B, \mu_f)$ $\times \sigma_{gg}^{\text{Intr.}}(x_1^0, x_2^0)$ $\times S_A(\vec{r}_A, z_A) S_B(\vec{r}_B, z_B)$ $2 \rightarrow 2$ kinematics with extrinsic p_{T}

$$\int dx_1 dx_2 \int d\vec{r}_A dz_A dz_B \times \mathcal{F}_g^A(x_1, \vec{r}_A, z_A, \mu_f) \mathcal{F}_g^B(x_2, \vec{r}_B, z_B, \mu_f) \times 2\hat{s} P_T \frac{d\sigma_{gg \rightarrow \Upsilon + g}}{d\hat{t}} \delta(\hat{s} - \hat{t} - \hat{u} - M^2) \times S_A(\vec{r}, z_A) S_B(\vec{r}_B, z_B)$$

If $\mathcal{F}_{g}^{A}(x, \vec{r}, z, \mu_{f})$ gives the distribution of a gluon of mom. fract. x at a position \vec{r}, z in a nucleus A, the differential cross-section reads:

$$\frac{d\sigma_{AB}}{dy \, dP_T \, d\vec{b}} =$$

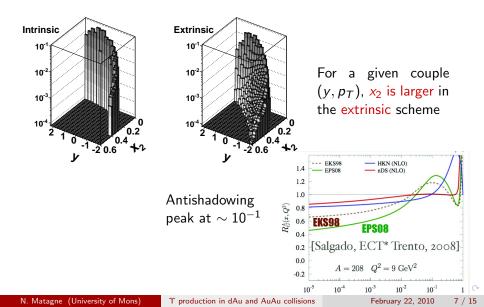
2
ightarrow 1 kinematics with intrinsic $p_{\mathcal{T}}$

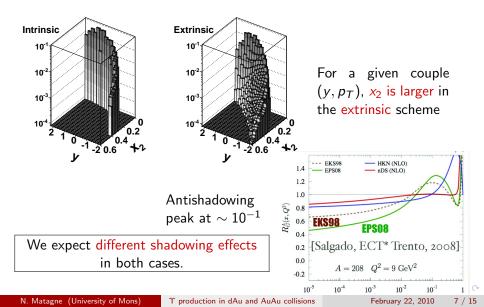

 $\int d\vec{r}_A dz_A dz_B$ $\times \mathcal{F}_g^A(x_1^0, \vec{r}_A, z_A, \mu_f) \mathcal{F}_g^B(x_2^0, \vec{r}_B, z_B, \mu_f)$ $\times \sigma_{gg}^{\text{Intr.}}(x_1^0, x_2^0)$ $\times S_A(\vec{r}_A, z_A) S_B(\vec{r}_B, z_B)$

$$x_{1,2} = \frac{m_T}{\sqrt{s_{NN}}} \exp\left(\pm y\right) \equiv x_{1,2}^0(y, P_T)$$

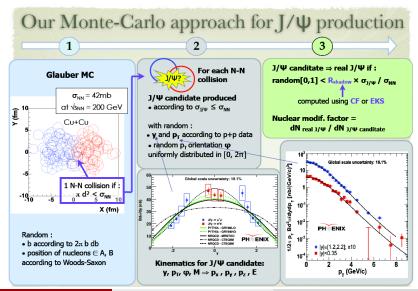
 $\mathbf{2} \rightarrow \mathbf{2}$ kinematics with extrinsic p_T

$$\int dx_1 dx_2 \int d\vec{r}_A dz_A dz_B \times \mathcal{F}_g^A(x_1, \vec{r}_A, z_A, \mu_f) \mathcal{F}_g^B(x_2, \vec{r}_B, z_B, \mu_f) \times 2\hat{s} P_T \frac{d\sigma_{gg \rightarrow \Upsilon + g}}{d\hat{t}} \delta(\hat{s} - \hat{t} - \hat{u} - M^2) \times S_A(\vec{r}, z_A) S_B(\vec{r}_B, z_B)$$

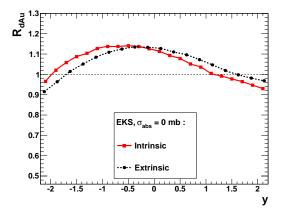

$$\delta(..) \rightarrow x_2 = \frac{x_1 m_T \sqrt{s_{NN}} e^{-y} - M^2}{\sqrt{s_{NN}} (\sqrt{s_{NN}} x_1 - m_T e^y)}$$



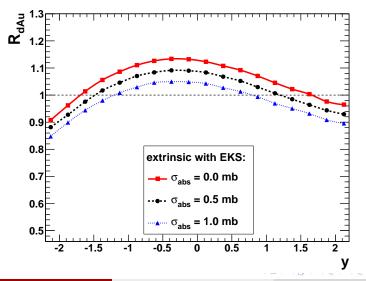
For a given couple (y, p_T) , x_2 is larger in the extrinsic scheme

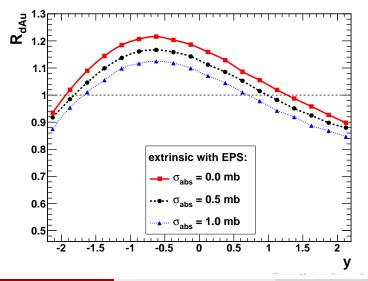

A (10) F (10)

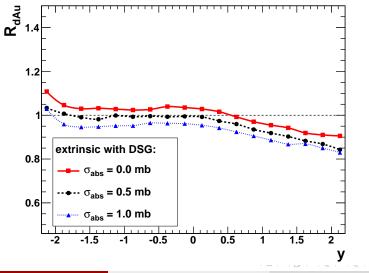
3


The Glauber Monte Carlo

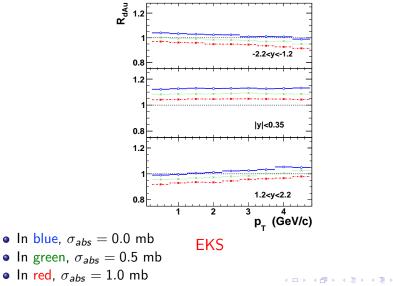
N. Matagne (University of Mons)

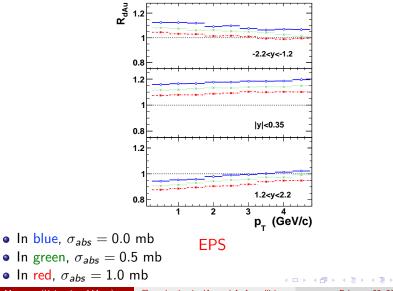

↑ production in dAu and AuAu collisions


Illustration of the differences between intrinsic and extrinsic p_T

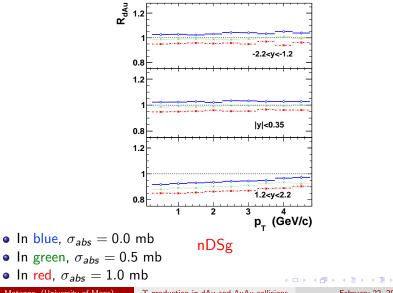


See Andry's talk

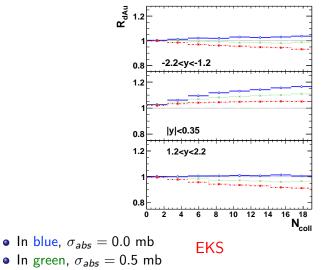

N. Matagne (University of Mons)



N. Matagne (University of Mons)

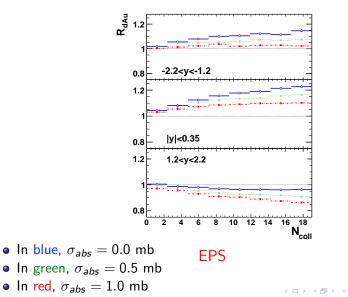

N. Matagne (University of Mons)

February 22, 2010

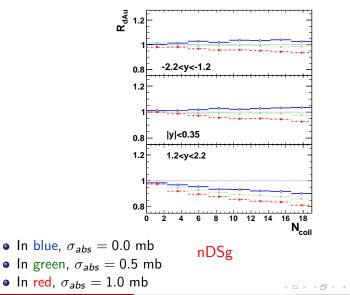

February 22, 2010 11 / 15

N. Matagne (University of Mons)

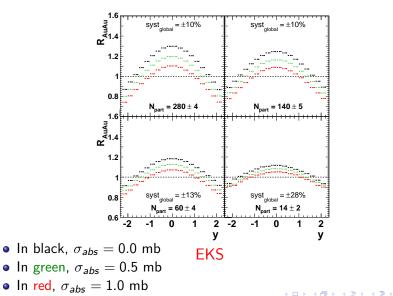
February 22, 2010 11 / 15


N. Matagne (University of Mons)

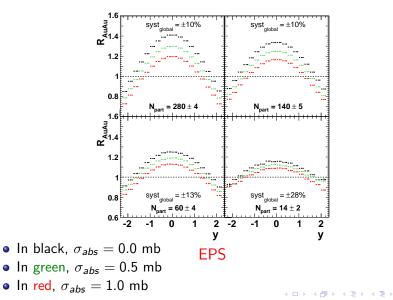
• In red,
$$\sigma_{abs} = 1.0 \text{ mb}$$

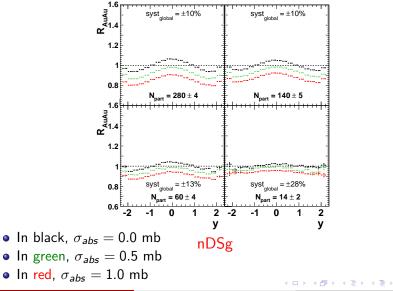

N. Matagne (University of Mons)

February 22, 2010

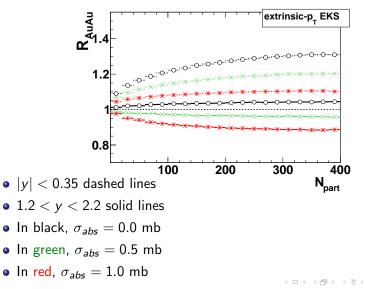

N. Matagne (University of Mons)

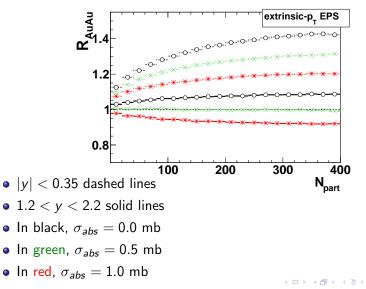
February 22, 2010

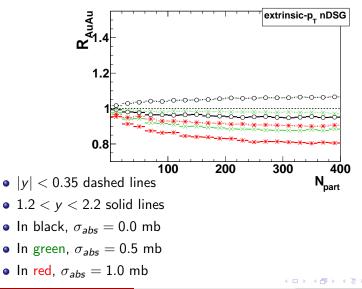



N. Matagne (University of Mons)

February 22, 2010




3



3

• Production of Upsilon sits in the antishadowing region at RHIC energy

∃ ► < ∃ ►</p>

A 🖓 h

3

- Production of Upsilon sits in the antishadowing region at RHIC energy
- Only very forward (backward) region shows $R_{dAU} < 1$ due to shadowing

通 ト イヨ ト イヨト

3

- Production of Upsilon sits in the antishadowing region at RHIC energy
- Only very forward (backward) region shows $R_{dAU} < 1$ due to shadowing
- \bullet Within the commonly accepted $\sigma_{\textit{abs}},$ one should expect an excess of Υ

E + 4 E +

- Production of Upsilon sits in the antishadowing region at RHIC energy
- Only very forward (backward) region shows $R_{dAU} < 1$ due to shadowing
- \bullet Within the commonly accepted $\sigma_{\textit{abs}},$ one should expect an excess of Υ
- ... unless there is no antishadowing (see nDSg)

・ 同 ト ・ ヨ ト ・ ヨ ト