Direct Photon Production In Association With A Heavy Quark Jet at Hadron and Ion Colliders

Workshop on nuclear Parton Distribution Functions

Tzvetalina Stavreva

LPSC

February 22, 2010

Table of contents

Introduction

Theory Overview

Tevatron

pp Collisions

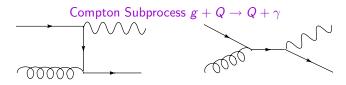
pA Collisions

Conclusions

Direct Photons and Heavy Quarks

Direct Photons

- Any photon that is produced during the hard scattering process or via fragmentation
- Escape confinement
- Photon acts as a probe of the hard scattering
- Useful for acquiring information on (n)PDFs (gluon)


$\gamma + Q$ production

- Direct photons are produced in association with many different particles
- ullet Look at one part of the cross section o piece with heavy quarks
- Better understand the role of heavy quarks in high p_T collisions
- Possibility to constrain (n)PDFs of heavy quarks

Hardscattering Production

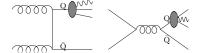
• Leading Order - $\mathcal{O}(\alpha \alpha_s)$ - Only **one** hard-scattering subprocess

• Next-to-Leading Order - $\mathcal{O}(\alpha\alpha_s^2)$

 $2 \rightarrow 3$ hard-scattering subprocesses

$$\begin{array}{lll} g+g \rightarrow Q + \bar{Q} + \gamma & Q+Q \rightarrow Q + Q + \gamma \\ g+Q \rightarrow g + Q + \gamma & Q+\bar{Q} \rightarrow Q + \bar{Q} + \gamma \\ Q+q \rightarrow q + Q + \gamma & q+\bar{q} \rightarrow Q + \bar{Q} + \gamma \\ Q+\bar{q} \rightarrow Q+\bar{q} + \gamma & q+\bar{q} \rightarrow Q + \bar{Q} + \gamma \end{array}$$

Also need to include Direct Photons which are produced via fragmentation



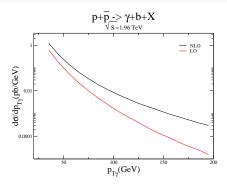
Photon Fragmentation

- \bullet If photon is emitted collinearly to a quark \to singularity
- Absorb singularity in $D_{\gamma/q,g}(z,\mu_F)$; resum large logs in $D_{\gamma/q,g}(z,\mu_F)$ FF via DGLAP
- Photon couples to quark, responsible for behavior of $D_{\gamma/q,g}(z,\mu_F)\sim \mathcal{O}(\alpha/\alpha_s)$

Fragmentation Effects

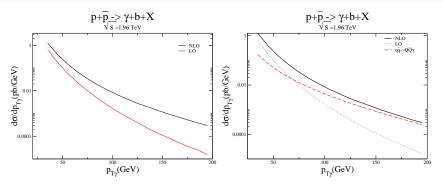
• LO: include all $2 \to 2$ subprocesses $\sim \mathcal{O}(\alpha_s^2)$, $\mathcal{O}(\alpha_s^2) \otimes D_{\gamma/q,g} \sim \alpha_s^2 \alpha/\alpha_s = \alpha \alpha_s$

• NLO: same idea as in LO case, convolute all 2 ightarrow 3 $\sim \mathcal{O}(\alpha_s^3)$ with γ FF

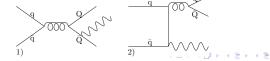

Photon Isolation

- Fragmentation contributions are greatly reduced due to isolation requirements
- Helps minimize background from photons coming from the decay of hadrons, e.g. $\pi^0 \to \gamma \gamma$
- Hadronic energy less than $E_h = \epsilon * E_{\gamma}$ in $R = \sqrt{(\eta_{\gamma} \eta_h)^2 + (\phi_{\gamma} \phi_h)^2}$
- Restrictions on z in theoretical calculation: $z>\frac{1}{1+\epsilon}$

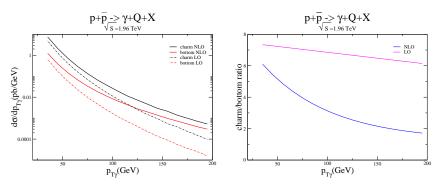
Subprocesses and PDFs


- Which subprocess dominates is highly dependent on collider type $(pp, p\bar{p})$ and center of mass energy
- Dependent on this is what (n)PDF and what x range can be probed

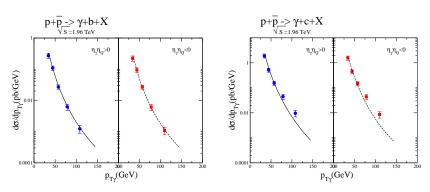
Tevatron Predictions



- As $p_{T\gamma}$ increases the difference between LO and NLO grows
- What drives this difference?

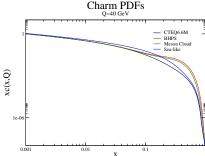

Tevatron Predictions

- ullet As $p_{T\gamma}$ increases the difference between LO and NLO grows
- What drives this difference?
- Abundance of q and ar q o annihilation subprocess dominates $qar q o \gamma Qar Q$



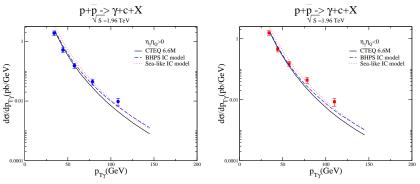
Comparison between charm and bottom

- Difference between b and c: quark charge $e_c^2=4/9, e_b^2=1/9$ and c PDF larger than b PDF LO
- At higher $p_{T\gamma}, q\bar{q}$ dominates and difference is reduced NLO

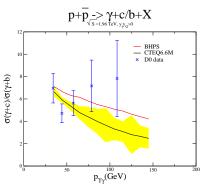

Comparison between theory and data Measurements by DØ Collaboration

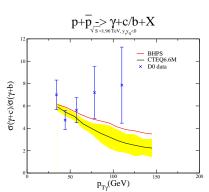
- There is really good agreement between data and theory for the bottom cross section
- For charm the data points at large $p_{T\gamma}$ lie above the theory curve \rightarrow possible explanation existence of intrinsic charm

Intrinsic Charm


- Even if annihilation process dominates due to the center of mass energies can probe for IC at Tevatron
- Presently assumed that $c(x, \mu = m_c) = 0$, i.e. need only knowledge of gluon PDF, $c(x, Q) \sim g(x, Q)$
- Three intrinsic charm models Non-perturbative charm component of the nucleon

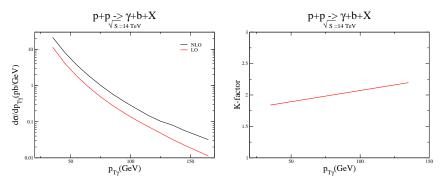
• For central rapidity $x \sim \frac{2p_T}{\sqrt{S}} \to \text{at higher } p_T \text{ can test for BHPS}$ model



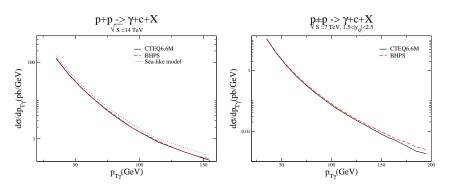

Comparison between theory and data - IC $c+\gamma$

- With the use of the BHPS PDFs the cross section grows at large $p_{T\gamma}$, but is still below the data
- However if we are to look at the ratio of the c to b cross section ...

Ratio of c and b

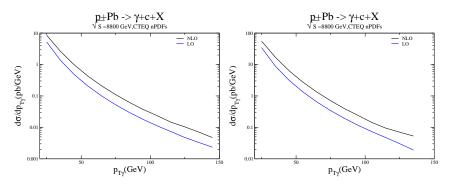


Things look better


LHC at 14 TeV

- At LHC p beams and higher center of mass
- No longer such a difference between LO and NLO

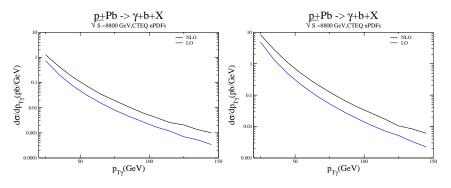
• Due to this there is great sensitivity to gluon and Q PDFs


Intrinsic Charm at the LHC

- Due to smaller x probed at the LHC can still test IC, but mainly the Sea-like model
- At 7 TeV and forward rapidity can slightly differentiate between BHPS and radiatively generated charm

pPb collisions at the LHC

 $p_{T \sim min} > 20 \text{ GeV}, p_{TOmin} > 15 \text{ GeV}, |y_O| < 0.7$

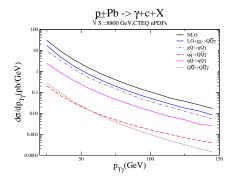


PHOS : $|y_{\gamma}| < 0.12,220^{\circ} < \phi_{\gamma} < 320^{\circ}$ EMCAL : $|y_{\gamma}| < 0.7,60^{\circ} < \phi_{\gamma} < 180^{\circ}$

- $\mathcal{L}_{pPb} = 10^{29} cm^{-2} s^{-1}$ (ALICE:Phys.Perf.Rep.Vol.II); $\mathcal{L}_{pPb}^{integ} = 53.9 pb^{-1}$
- PHOS: $\sigma_{\gamma+c}^{tot}=130.5pb$ naive estimate $\mathcal{N}_{events}=\sigma_{\gamma+c}^{tot}\mathcal{L}_{nPh}^{integ}\sim7000$
- EMCAL: $\sigma_{\gamma+c}^{tot} = 850pb$ naive estimate $\mathcal{N}_{events} = \sigma_{\gamma+c}^{tot} \mathcal{L}_{pPb} \sim 45000$

pPb collisions at the LHC

 $p_{T_{\gamma}} > 20 \text{ GeV}, p_{TQ} > 15 \text{ GeV}, |y_Q| < 0.7$


PHOS: $|y_{\gamma}| < 0.12,220^{\circ} < \phi_{\gamma} < 320^{\circ}$ EMCAL: $|y_{\gamma}| < 0.7,60^{\circ} < \phi_{\gamma} < 180^{\circ}$

- PHOS: $\sigma_{\gamma+b}^{tot} = 20pb$ naive estimate $\mathcal{N}_{events} = \sigma_{\gamma+b}^{tot} \mathcal{L}_{pPb}^{integ} \sim 1000$
- EMCAL: $\sigma_{\gamma+b}^{tot}=131pb$ naive estimate $\mathcal{N}_{events}=\sigma_{\gamma+b}^{tot}\mathcal{L}_{pPb}^{integ}\sim7100$
- ullet Not a big difference between NLO and LO o check other contributing subprocesses

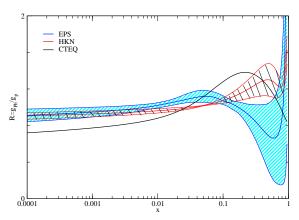
pPb collisions - subprocess contributions

• $p_{T\gamma} > 20 \text{ GeV}, p_{TQ} > 15 \text{GeV}, |y_{\gamma}| < 0.12, |y_{Q}| < 0.7$

- The Compton subprocess dominates
- $\gamma + Q$ great probe of gluon + HQ nuclear PDFs

$\gamma + Q$ and nuclear PDFs

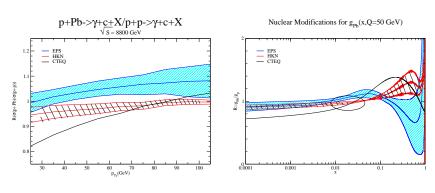
nuclear PDFs


- Give probability of finding a parton with a momentum fraction x in a nucleus
- Needed for heavy ion collisions, at ALICE, RHIC
- Gluon nPDF largely unconstrained

$$\gamma + Q$$

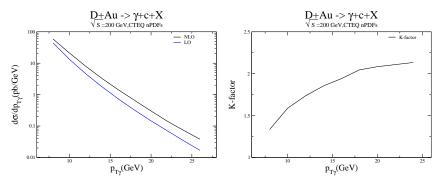
- Over 80% of the cross section is from g + Q initiated subprocesses
- Can test both g & c PDF in $\gamma + c$ studies
- If no IC charm all this sensitivity is due to the gluon PDF
- Same in $\gamma + b \rightarrow \text{test g PDF}$

Nuclear Modifications


Nuclear Modifications for $g_{pb}(x,Q=50 \text{ GeV})$

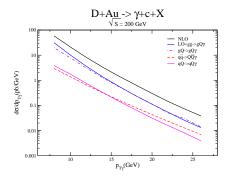
• Comparison between different nPDF sets for the gluon nuclear modifications $R_g^{Pb} = \frac{g_{Pb}(x,Q)}{g_p(x,Q)}$

Nuclear Modifications to $\gamma + c$



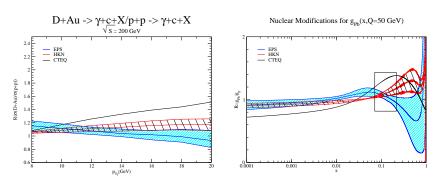
- Probes relatively small x
- Measurements with appropriate error bars can distinguish between the different nPDFs

gamma+Q at RHIC


• $p_{T\gamma} > 7 \text{ GeV}, p_{TQ} > 5 \text{GeV}, |y_{\gamma}| < 0.35, |y_{Q}| < 0.8$

- $\mathcal{L}_{DAu} = 62 nb^{-1}$ per week (H.F.Work.Group.Report) $\rightarrow \mathcal{L}^{integ} = 290 pb^{-1}$
- $\sigma_{\gamma+c}^{tot}=190 pb$ naive estimate $\mathcal{N}_{events}=\sigma_{\gamma+c}^{tot}\mathcal{L}^{integ}\sim 55000$

gamma+Q at RHIC - subprocess contributions


• $p_{T\gamma} > 7 \text{ GeV}, p_{TQ} > 5 \text{GeV}, |y_{\gamma}| < 0.35, |y_{Q}| < 0.8$

- The Compton subprocesses dominate
- The annihilation subprocess picks up slightly at higher $p_T o q$ PDF grows at large x

gamma+Q at RHIC

- At RHIC higher x region is probed
- Complimentary information to ALICE

Conclusions

- At Tevatron energies $qar{q}$ dominates the cross section at large $p_{T\gamma}$
- Good distinction between different IC models, can test for BHPS, Sea-like
- At the LHC (pp 14 TeV or pPb) subprocesses with initial gluons and heavy quarks dominate
- Great process for constraining g and Q (n)PDFs
- Can distinguish between different nPDF sets, CTEQ, HKN, EPS
- ALICE and RHIC probe different x regions → supplemental information
- ullet Future work Energy Loss o predictions for **AA collisions**