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What is factorization?

• QCD is the fundamental theory of strong interactions
among quarks and gluons

• Experiments involve hadrons in their initial and final states,
not quarks and gluons

• Hadrons cannot be described perturbatively in QCD

• Scattering amplitudes with time-like on-shell momenta
cannot be computed on the lattice

⊲ How can we compare theory and experiments?

⊲ Factorization : separation of short distances
(perturbative) and long distance (non perturbative)
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What is factorization?

• At a superficial level, factorization means that :

Ohadrons= F ⊗ Opartons

• F = parton distribution
• Opartons= observable at the partonic level

(calculable in perturbation theory)

• For this to be useful, F must be universal
(i.e. independent of the observable O)

• In order to test QCD experimentally, measure as many
observables as possible, and try to find common F ’s that
fit all the data

Note : at this stage, by looking at only one observable, it is
impossible to perform any meaningful test, since it is
generally possible to adjust F so that it works
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What is factorization?

• Some loop corrections in Opartonsare enhanced by large
logarithms, e.g.

αs ln
(

M2

m2
H

)

, αs ln
( s

M2

)

∼ αs ln
(

1
x

)

Note : the log that occurs depends on the details of the
kinematics

• Bjorken limit: s, M2 → +∞ with s/M2 fixed
• Regge limit: s → +∞, M2 fixed

• These logs upset a naive application of perturbation
theory when αs ln(·) ∼ 1 ⊲ they must be resummed

• This resummation can be performed analytically

• the result of the resummation is universal

• all the leading logs can be absorbed in F
⊲ the factorization formula remains true
⊲ this summation dictates how F evolves with M2 or x
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What is factorization?

• These logarithms tell us that the relevant parton
distributions depend on the resolution scales (in time and
in transverse momentum) associated to a given process

• Calculation of some process at LO :





(M⊥  , Y )

x1

x2

{

x1 = M⊥ e+Y/
√

s

x2 = M⊥ e−Y/
√

s
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What is factorization?

• These logarithms tell us that the relevant parton
distributions depend on the resolution scales (in time and
in transverse momentum) associated to a given process

• Radiation of an extra gluon :





(M⊥  , Y )

x1

x2

z,k⊥

=⇒ αs

∫

x1

dz
z

M⊥∫
d2~k⊥

k2
⊥

• Practical consequence : pQCD predicts not only Opartons

but also the evolution ∂M F (or ∂xF )

⊲ the only required non-perturbative input is F (x , M0) or
F (x0, M)
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Why factorization works

τcoll ∼ E-1

• The duration of the collision is very short: τcoll ∼ E−1
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Why factorization works

τcoll ∼ E-1

• The duration of the collision is very short: τcoll ∼ E−1

• The logarithms we need to resum arise from the radiation
of soft gluons, which takes a long time
⊲ it must happen (long) before the collision
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Why factorization works

τcoll ∼ E-1

space-like interval

• The duration of the collision is very short: τcoll ∼ E−1

• The logarithms we need to resum arise from the radiation
of soft gluons, which takes a long time
⊲ it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
⊲ the logarithms are intrinsic properties of the projectiles,
independent of the measured observable
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Common forms of factorization: 1. DGLAP

• Logs of M⊥ =⇒ DGLAP. Important when :
• M⊥ ≫ ΛQCD , while x1, x2 are rather large

• Cross-sections read :

dσ

dYd2~P⊥

∝ F (x1, M2
⊥) F (x2, M2

⊥) |M|2

with x1,2 = M⊥ exp(±Y )/
√

s

• Note : there are convolutions in x1 and x2 if some particles
are integrated out in the final state

• The factorization of logarithms has been proven to all
orders for sufficiently inclusive quantities
(see Collins, Soper, Sterman, 1984–1985)
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Common forms of factorization: 2. BFKL

Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991)

• Logs of 1/x =⇒ BFKL. Important when :
• M⊥ remains moderate, while x1 or x2 (or both) are small

• The BFKL equation is non-local in transverse momentum
⊲ it applies to non-integrated gluon distributions ϕ(x , ~k⊥)

xG(x , Q2) =

Q2
Z

d2~k⊥

(2π)2
ϕ(x , ~k⊥)

⊲ the matrix element must calculated for off-shell gluons with
~k⊥ 6= ~0

• In this framework, cross-sections read :

dσ

dYd2~P⊥

∝
Z

~k1⊥,~k2⊥

δ(~k 1⊥+~k 2⊥−~P⊥) ϕ1(x1, k1⊥) ϕ2(x2, k2⊥)
|M|2

k2
1⊥k2

2⊥
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Conditions of validity

• Dilute regime : one parton in each projectile interact
(what the standard PDFs are made for)
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Conditions of validity

• Dilute regime : one parton in each projectile interact
(what the standard PDFs are made for)

• Dense regime : multiparton processes become crucial
⊲ standard forms of factorization break down
⊲ new distributions are required
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Growth of the gluon distribution at small x

Gluon distribution at small x

• Note: gluons have been divided by 20

• Gluons dominate at any x ≤ 10−1
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Longitudinal momentum fraction in AA collisions

Nucleus-Nucleus collision

• 99% of the multiplicity below p⊥ ∼ 2 GeV

• x ∼ 10−2 at RHIC (
√

s = 200 GeV)

• x ∼ 4.10−4 at the LHC (
√

s = 5.5 TeV)

⊲ partons at small x are the most important
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Nucleon partonic structure

At low energy:

• Fluctuations at all space-time scales smaller than its size

• Only the fluctuations that are longer lived than the external probe
participate in the interaction process

• Interactions are very complicated if the constituents of the
nucleon have a non trivial dynamics over time-scales comparable
to those of the probe
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Nucleon partonic structure

At high energy:

• Dilation of all internal time-scales of the nucleon

• Interactions among constituents now take place over time-scales
that are longer than the characteristic time-scale of the probe
⊲ the constituents behave as if they were free

• Many fluctuations live long enough to be seen by the probe
⊲ the nucleon appears denser at small x

• Pre-existing fluctuations are frozen over the time-scale of the
probe, and act as static sources of new partons
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Gluon saturation

• at low energy, the probe sees mostly the valence quarks
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Gluon saturation

• when energy increases, new partons are emitted

• the emission probability is αs
∫

dx
x ∼ αs ln( 1

x ), with x the
longitudinal momentum fraction of the gluon

• at small-x (i.e. high energy), these logs need to be
resummed
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Gluon saturation

• as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given
step is proportional to the number of partons at the previous step
(BFKL)
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Gluon saturation

• eventually, the partons start overlapping in phase-space

• parton recombination becomes favorable

• after this point, the evolution is non-linear:
the number of new partons depends non-linearly on the number
of partons at the previous step
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Criterion for gluon recombination

Gribov, Levin, Ryskin (1983)

Number of gluons per unit area :

ρ ∼ xGA(x ,Q
2)

πR2
A

Recombination cross-section :

σgg→g ∼ αs

Q2

Recombination happens if ρσgg→g & 1, i.e. Q2 . Q2
s , with :

Q2
s ∼ αsxGA(x ,Q

2
s )

πR2
A

∼ A1/3 1
x0.3

Note: At a given energy, the saturation scale is larger for a
nucleus (for A = 200, A1/3 ≈ 6)
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD
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Multiple scatterings

• Power counting :

2 scatterings
1 scattering

∼ Q2
s

M2
⊥

with Q2
s ∼ αs

xG(x , Q2
s )

πR2

• When this ratio becomes ∼ 1, all the rescattering
corrections become important

⊲ one must resum all
[
Qs/M⊥

]n

• These effects are not accounted for in DGLAP or BFKL
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Color Glass Condensate: Degrees of freedom

CGC = effective theory of small x gluons

• The fast partons (k+ > Λ+) are frozen by time dilation
⊲ described as static color sources on the light-cone :

Jµ = δµ+ρ(x−, ~x⊥) (0 < x− < 1/Λ+)

• Slow partons (k+ < Λ+) cannot be considered static over
the time-scales of the collision process
⊲ they must be treated as standard gauge fields

Eikonal coupling to the current Jµ : AµJµ

• The color sources ρ are random, and described by a
distribution functional WΛ+ [ρ], with Λ+ the longitudinal
momentum that separates “soft” and “hard”
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Color Glass Condensate: RG evolution

Evolution equation (JIMWLK) :

∂WΛ+

∂ ln(Λ+)
= H WΛ+

H =
1
2

Z

~x⊥,~y
⊥

δ

δα(~y⊥)
η(~x⊥, ~y⊥)

δ

δα(~x⊥)

where α(~x⊥) = 1
∇2

⊥

ρ(1/Λ+, ~x⊥)

• η(~x⊥, ~y⊥) is a non-linear functional of ρ

• This evolution equation resums all the powers of
αs ln(1/x) and of Qs/p⊥ that arise in loop corrections

• This equation simplifies into the BFKL equation when the
source ρ is small (one can expand η in powers of ρ)
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Reminder on DIS

• Collision between an electron and a nucleon or nucleus,
by exchange of a virtual photon

e-

p , A

• Variant : collision with a neutrino, by exchange of Z 0,W±
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Inclusive DIS at Leading Order

• CGC effective theory with cutoff at the scale Λ−
0 :

k-

P -Λ -
0

fields sources

• At Leading Order, DIS is an interaction between the target
and a qq̄ fluctuation of the virtual photon :
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Inclusive DIS at Leading Order

• Forward dipole amplitude at leading order:

T LO(~x⊥, ~y⊥) = 1 − 1
Nc

tr (U(~x⊥)U†(~y⊥)
︸ ︷︷ ︸

Wilson lines

)

U(~x⊥) = P exp ig
∫ 1/xP−

dz+ A−(z+, ~x⊥)

[Dµ,Fµν ] = δν− ρ(x+, ~x⊥)

⊲ at LO, the scattering amplitude on a saturated target is
entirely given by classical fields

• Note: the qq̄ pair couples only to the sources up to the
longitudinal coordinate z+ . (xP−)−1. The other sources
are too slow to be seen by the probe
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Inclusive DIS at NLO

• Consider now quantum corrections to the previous result,
restricted to field modes with Λ−

1 < k− < Λ−
0 (the upper

bound prevents double-counting with the sources):

k-

P -Λ -
0Λ -

1

fields sources

• At NLO, the qq̄ dipole must be corrected by a gluon, e.g. :
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Inclusive DIS at NLO

k-

P -Λ -
0Λ -

1

fields sources

δT
NLO

T
LO

• At leading log accuracy, the contribution of the quantum
modes in that strip is :

δT NLO(~x⊥, ~y⊥) = ln
(

Λ−
0

Λ−
1

)

H T LO(~x⊥, ~y⊥)
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Inclusive DIS at NLO

• These NLO corrections can be absorbed in the LO result,

〈

T LO + δT NLO

〉

Λ−

0

=
〈

T LO

〉

Λ−

1

provided one defines a new effective theory with a lower
cutoff Λ−

1 and an extended distribution of sources WΛ−

1
[ρ]:

k-

P -Λ -
1 Λ -

0

fields sources

T
LO

WΛ−

1
≡

[

1 + ln
(

Λ−
0

Λ−
1

)

H
]

WΛ−

0

(JIMWLK equation for a small change in the cutoff)
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Inclusive DIS at Leading Log

• Iterate the previous process to integrate out all the slow
field modes at leading log accuracy:

Inclusive DIS at Leading Log accuracy

σγ∗T =

∫ 1

0
dz

∫

d2~r⊥
∣
∣ψ(q|z,~r⊥)

∣
∣
2
σdipole(x ,~r⊥)

σdipole(x ,~r⊥) ≡ 2
∫

d2~X⊥

∫
[
Dρ

]
WxP− [ρ] T LO(~x⊥, ~y⊥)
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Stages of an AA collision

z 

t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

• The Color Glass Condensate provides a framework to
describe nucleus-nucleus collisions up to a time τ ∼ Q−1

s

• Subsequent stages are usually described as fluid
dynamics
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Reminder on hydrodynamics

Equations of hydrodynamics = energy-momentum conservation:

∂µT µν = 0

Inputs from the underlying microscopic theory :

EoS : p = f (ǫ) , Transport coefficients : η, ζ, · · ·

• Required initial conditions : T µν(τ = τ0, η, ~x⊥)
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Initial conditions from CGC: Leading Order

• T µν has two remarkable properties:
• only connected graphs contribute
• simpler expression in terms of retarded propagators

• Small coupling expansion for T µν :

T µν =
Q4

s

g2

[

c0 + c1 g2 + c2 g4 + · · ·
]

• The Leading Order contribution is given by classical fields :

T µν
LO

≡ c0
Q4

s

g2 =
1
4

gµν FλσFλσ −FµλFν
λ

with
[
Dµ,Fµν

]
= Jν

︸ ︷︷ ︸

Yang−Mills equation

, lim
t→−∞

Aµ(t , ~x) = 0
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Initial conditions from CGC: Leading Log resummation

• The previous power counting implicitly assumes that the
coefficients cn are numbers of order one. However, large
logarithms of the CGC cutoffs appear at NLO

• Like in DIS, the coefficients of the logs are given by the
action of the JIMWLK Hamiltonian on the LO observable:

δT µν
NLO

=
[

ln
(

Λ−
0

Λ−
1

)

H1 + ln
(

Λ+
0

Λ+
1

)

H2

]

T µν
LO

• By iterating this process, one arrives at:

〈
T µν(τ, η, ~x⊥)

〉

LLog
=

∫
[
Dρ1 Dρ2

]
W1 [ρ1

]
W2

[
ρ2

]
T µν

LO
(τ, ~x⊥)

︸ ︷︷ ︸

for fixed ρ1,2

(FG, Lappi, Venugopalan (2008))
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Correlations in η and ~x⊥

• The factorization valid for
〈
T µν

〉
can be extended to

multi-point correlations :

〈
T µ1ν1(τ, η1, ~x1⊥) · · ·T µnνn(τ, ηn, ~xn⊥)

〉

LLog
=

=

∫
[
Dρ1 Dρ2

]
W1

[
ρ1

]
W2

[
ρ2

]

× T µ1ν1
LO

(τ, ~x1⊥) · · ·T µnνn
LO

(τ, ~xn⊥)

⊲ For each ρ1,2, solve the Yang-Mills equations to get the
classical field Aµ, then compute T µν

LO
from Aµ

By sampling the distributions W1,2[ρ1,2], one gets all the
correlations at leading log accuracy
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DGLAP and saturation

• Question 1: can one define standard PDFs in the
saturated regime?

⊲ yes, but they are insufficient to do any calculation,
because they do not provide any information about
multi-parton correlations

• Question 2: can one define modified PDFs that would
encode these correlations?

⊲ for a given process, maybe. But these functions would
not be universal
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DGLAP and saturation

• Question 3: my favorite observable is not in the saturated
regime: I should be fine with the usual PDFs?

⊲ maybe not... PDFs may have been contaminated by an
improper evolution from a smaller Q:

Qs(x)

x

Q

10
-1

10
-2

10
-3

10
-4

10
-5

1 GeV

Q0
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Dense-dilute limit

• Factorization in the saturated regime:

〈O〉
LLog

=

∫
[
Dρ1 Dρ2

]
W1 [ρ1

]
W2

[
ρ2

]
O[ρ1,2 ]

(O[ρ1,2 ] can only be calculated numerically)

• But if ρ1 is a weak source (projectile 1 is dilute):

O[ρ1,2 ] =

∫

~k1⊥

ρ2
1
(~k1⊥) O2[~k1⊥, ρ2 ]+ρ

4
1
(~k1⊥) O4[~k1⊥, ρ2 ]+· · ·

and O2[~k1⊥, ρ2 ] has a compact analytical expression
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Dense-dilute limit

• One gets the non-integrated gluon distribution:
∫

[Dρ1 ] W1[ρ1 ] ρ
2
1
(~k1⊥) ≡ ϕ1(~k1⊥)

• The expectation value of O can be rewritten as

〈O〉
LLog

=

∫

~k1⊥

ϕ1(~k1⊥)

∫
[
Dρ2

]
W2

[
ρ2

]
O2[~k1⊥, ρ2 ]

• This can be further simplified by noting that O2[~k1⊥, ρ2 ]
contains only simple correlators of Wilson lines

⊲ one can replace the JIMWLK equation by the much
simpler BK equation (mean field approximation)
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Dense-dilute limit: heavy quarks production in pA collisio ns

Pair production cross-section:

dσqq̄

d2~p⊥d2~q⊥dypdyq
=

α2
sN

8π4dA

Z

~k1⊥,~k2⊥

δ(~p⊥ + ~q⊥ − ~k 1⊥ − ~k 2⊥)

k 2
1⊥k 2

2⊥

×
n

Z

~k⊥,~k ′

⊥

tr
h

(/q+m)Tqq̄(~k⊥)(/p−m)T ∗
qq̄(~k

′

⊥)
i

φ(4)
A

(~k 2⊥|~k⊥, ~k
′

⊥)

+

Z

~k⊥

tr
h

(/q+m)Tqq̄(~k⊥)(/p−m)/L∗ + h.c.
i

φ(3)
A

(~k 2⊥|~k⊥)

+tr
h

(/q+m)/L(/p−m)/L∗
i

φ(2)
A

(~k 2⊥)
o

ϕ1(
~k 1⊥)

⊲ standard factorization broken for the nucleus: one needs three
different “distributions” in order to describe the target
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Target correlators

• Target “gluon distributions”:

φ(2)
A

(~k 2⊥) ∝
Z

~x⊥,~y
⊥

ei~k2⊥·(~x⊥−~y
⊥

) tr
D

U(~x⊥)U†(~y⊥)
E

φ(3)
A

(~k 2⊥|~k⊥) ∝
Z

~x⊥,~y
⊥

,~z⊥

ei
ˆ

~k⊥·~x⊥+(~k2⊥−~k⊥)·~y
⊥
−~k2⊥·~z⊥

˜

× tr
D

eU(~x⊥)ta
eU†(~y⊥)tbUba(~z⊥)

E

φ(4)
A

(~k 2⊥|~k⊥, ~k
′

⊥) ∝
Z

~x⊥,~y
⊥

,~x′

⊥
,~y′

⊥

ei
ˆ

~k⊥·~x⊥−~k ′

⊥
·~x′

⊥
+(~k2⊥−~k⊥)·~y

⊥
−(~k2⊥−~k ′

⊥
)·~y′

⊥

˜

× tr
D

eU(~x⊥)ta
eU†(~y⊥)eU(~y ′

⊥)ta
eU(~x ′

⊥)
E
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Limit of Kt factorization

Fujii, FG, Venugopalan (2005)

• The quark cross-section factorizes if the the 3-point and
2-point functions are related by:

φ(3)
A

(~k 2⊥|~k⊥) = (2π)2 1
2

h

δ(~k⊥) + δ(~k⊥ − ~k 2⊥)
i

φ(2)
A

(~k 2⊥)

• This relation would be satisfied if the QQ pair interacts
with the target in such a way that all the momentum
exchanged goes to the quark or to the antiquark

• The ratio φ(3)
A

(~k2⊥|~k⊥)/φA(
~k2⊥) should be close to the

sum of two delta functions for factorization to be
approximately valid
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3-point correlator

• 3-point function/2-point function (in the MV model):

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-2  0  2  4  6  8  10  12
k⊥  (GeV)

φ(3)(k2⊥ |k⊥ ) / φ(k2⊥ )  for  Qs
2 = 2 GeV2

k2⊥  = 1 GeV

k2⊥  = 2 GeV

k2⊥  = 4 GeV

k2⊥  = 6 GeV

k2⊥  = 10 GeV
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Factorization violation for b quarks

• Single b-quark cross-section :

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  2  4  6  8  10

q⊥   (GeV)

exact / k⊥ -factorized  (m = 4.5 GeV)

Qs
2
 = 1 GeV

2

Qs
2
 = 4 GeV

2

Qs
2
 = 15 GeV

2

Qs
2
 = 25 GeV

2
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Factorization violation for c quarks

• Single c-quark cross-section :

 0.2

 0.4

 0.6

 0.8

 1
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Summary

• Gluon saturation is enhanced in nuclei, and is reached
earlier than in nucleons

• An effect of saturation is to break the standard forms of
factorization (in particular the one based on DGLAP
evolution)

⊲ This may lead to an apparent non universality of the
parton distributions

• In the saturated non-linear regime, there exist some
universal distributions W [ρ] that describe the dense
projectiles both in DIS and AA collisions

• Resums the logs of 1/x at leading log accuracy

• Applies to sufficiently inclusive observables

(but this factorization framework is hard to implement in
practical calculations...)
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