Gluon shadowing and J/ψ suppression in p A collisions: uncertainties and constraints

François Arleo

LAPTH, Annecy

Workshop on nPDF – LAPTH, February 2010

Outline

- Motivations
 - final state interaction vs. gluon nPDF
- World data analysis
 - impact of nPDF uncertainties
- Constraints on gluon nPDF from J/ψ data
 - specific analysis of E866/NuSea

References

- FA, V.-N. Tram, Eur. Phys. J. C 55 (2008) 449
- V.-N. Tram, FA, Eur. Phys. J. C 61 (2009) 847
- FA, Phys. Lett. B 666 (2008) 31

J/ψ suppression in nuclear collisions

Experimentally

$$R \equiv \frac{\sigma(p A \to J/\psi X)}{A \sigma(p p \to J/\psi X)} < 1$$

J/ψ suppression in nuclear collisions

Experimentally

$$R \equiv \frac{\sigma(p A \to J/\psi X)}{A \sigma(p p \to J/\psi X)} < 1$$

Why is $R \neq 1$?

Two usual suspects

- Inelastic interaction with nuclear matter
- Effects of nuclear parton densities (nPDF)

J/ψ suppression in nuclear collisions

Experimentally

$$R \equiv \frac{\sigma(p A \to J/\psi X)}{A \sigma(p p \to J/\psi X)} < 1$$

Why is $R \neq 1$?

Two usual suspects

- Inelastic interaction with nuclear matter
- Effects of nuclear parton densities (nPDF)
- ullet Need to know nPDF to understand J/ψ suppression data
- ullet Possibility to use J/ψ suppression data to constrain nPDF

Strategy

Aim of this analysis

To determine quantitatively the J/ψ inelastic cross section from a χ^2 analysis of all available data on J/ψ production on nuclei

Strategy

Aim of this analysis

To determine quantitatively the J/ψ inelastic cross section from a χ^2 analysis of all available data on J/ψ production on nuclei

Data sets

- Inelastic hadroproduction $h A \rightarrow J/\psi X$
- ullet Inelastic photoproduction $\gamma \hspace{0.1cm} extstyle A
 ightarrow extstyle J/\psi \hspace{0.1cm} extstyle X$
- Inelastic leptoproduction $\gamma^* A \rightarrow J/\psi X$

Strategy

Aim of this analysis

To determine quantitatively the J/ψ inelastic cross section from a χ^2 analysis of all available data on J/ψ production on nuclei

Data sets

- Inelastic hadroproduction $h A \rightarrow J/\psi X$
- ullet Inelastic photoproduction $\gamma \hspace{0.1cm} {\sf A}
 ightarrow {\sf J}/\psi \hspace{0.1cm} {
 m X}$
- Inelastic leptoproduction $\gamma^* A \rightarrow J/\psi X$

Nuclear effects considered

- J/ψ inelastic interaction in nuclear matter
- Nuclear modifications of parton distribution functions

Production cross section

Hadroproduction

Colour Evaporation Model is assumed

$$\begin{array}{ll} \frac{\mathrm{d}\sigma^{^{\mathrm{no \; abs}}}}{\mathrm{d}x_{\mathrm{F}}} & \propto & \int_{2m_{c}}^{2m_{D}} \mathrm{d}m \; \frac{2m}{\sqrt{x_{\mathrm{F}}^{2}s + 4m^{2}}} \; \left[f_{g}^{h}(x_{1}) \; f_{g}^{A}(x_{2}) \; \; \hat{\sigma}_{gg \rightarrow c\bar{c}} \right. \\ \\ & + \; \sum_{q=u,d,s} \left\{ f_{q}^{h}(x_{1}) \; f_{\bar{q}}^{A}(x_{2}) + f_{\bar{q}}^{h}(x_{1}) \; f_{q}^{A}(x_{2}) \right\} \; \; \hat{\sigma}_{q\bar{q}\rightarrow c\bar{c}} \end{array}$$

- f_i^h : parton distributions functions in the hadron
- $oldsymbol{\hat{\sigma}}$: LO partonic cross sections
- x_1/x_2 : projectile / target parton momentum fractions

Production cross section

Hadroproduction

Colour Evaporation Model is assumed

$$\frac{\mathrm{d}\sigma^{\text{no abs}}}{\mathrm{d}x_{\text{F}}} \propto \int_{2m_{c}}^{2m_{D}} \mathrm{d}m \, \frac{2m}{\sqrt{x_{\text{F}}^{2}s + 4m^{2}}} \left[f_{g}^{h}(x_{1}) \, f_{g}^{A}(x_{2}) \, \hat{\sigma}_{gg \to c\bar{c}} \right]$$

$$+ \sum_{q=u,d,s} \left\{ f_{q}^{h}(x_{1}) \, f_{\bar{q}}^{A}(x_{2}) + f_{\bar{q}}^{h}(x_{1}) \, f_{q}^{A}(x_{2}) \right\} \, \hat{\sigma}_{q\bar{q} \to c\bar{c}}$$

Leptoproduction

$$\frac{\mathrm{d}\sigma^{\text{no abs}}}{\mathrm{d}x} \propto f_g^A(x)$$

Production cross section

Hadroproduction

Colour Evaporation Model is assumed

$$\frac{\mathrm{d}\sigma^{\text{no abs}}}{\mathrm{d}x_{\text{F}}} \propto \int_{2m_{c}}^{2m_{D}} \mathrm{d}m \, \frac{2m}{\sqrt{x_{\text{F}}^{2}s + 4m^{2}}} \left[f_{g}^{h}(x_{1}) \, f_{g}^{A}(x_{2}) \, \hat{\sigma}_{gg \to c\bar{c}} \right.$$

$$+ \sum_{g=u,d,s} \left\{ f_{q}^{h}(x_{1}) \, f_{\bar{q}}^{A}(x_{2}) + f_{\bar{q}}^{h}(x_{1}) \, f_{q}^{A}(x_{2}) \right\} \, \hat{\sigma}_{q\bar{q} \to c\bar{c}} \right]$$

Leptoproduction

$$\frac{\mathrm{d}\sigma^{\text{no abs}}}{\mathrm{d}x} \propto f_g^A(x)$$

What should be taken for the nuclear densities f_i^A ?

nPDF

PDFs in nuclei differ significantly from those in a proton

This should affect the nuclear dependence of J/ψ production

nPDF

PDFs in nuclei differ significantly from those in a proton

Issue: large uncertainties

- in the gluon sector
- at small x and low scales

nPDF parametrizations

Several LO/NLO determinations of

$$f_i^A(x, Q^2) / f_i^p(x, Q^2)$$
 $(i = q, \bar{q}, g)$

from DIS and DY (and hadron prod. for EPS08) data can be used

nPDF parametrizations

Several LO/NLO determinations of

$$f_i^A(x, Q^2) / f_i^p(x, Q^2)$$
 $(i = q, \bar{q}, g)$

from DIS and DY (and hadron prod. for EPS08) data can be used

- Eskola–Kolhinen–Salgado
- Hirai–Kumano–Miyama
- Eskola–Paukkunen–Salgado
- de Florian–Sassot
- Hirai–Kumano–Nagai
- Eskola–Paukkunen–Salgado
- I. Schienbein et al.

EKS98 LO (1998)

HKM LO (2001)

EPS08 LO (2008)

nDS / nDSg NLO (2003)

HKN NLO (2007)

EPS09 NLO (2009)

nCTEQ NLO (2009)

Differences come from the various data sets and fitting procedures

Nuclear absorption

Assume factorization between production and rescattering

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x} = S^{\mathrm{abs}}(A, \sigma_{J/\psi N}) \times \frac{\mathrm{d}\sigma^{\mathrm{no \ abs}}}{\mathrm{d}x}$$

 $S^{
m abs}$ survival probability of J/ψ in the target nucleus

$$S^{\text{abs}} = \frac{1}{(A-1) \sigma_{J/\psi N}} \int d\mathbf{b} \left(1 - e^{-(1-1/A) T_A(\mathbf{b}) \sigma_{J/\psi N}} \right)$$

with $T_A(\mathbf{b})$ thickness function

Minimization

Cross section determined from the usual χ^2 minimization

$$\chi^2(\hat{\sigma}_{{\scriptscriptstyle J/\psi}{\scriptscriptstyle N}}) = \min\left[\chi^2(\sigma_{{\scriptscriptstyle J/\psi}{\scriptscriptstyle N}})\right]$$

with sophisticated definition of χ^2 to account for correlated errors

 1σ error $\delta\hat{\sigma}_{J/\psi N}$ defined as

$$\Delta\chi^2 \equiv \chi^2(\hat{\sigma}_{_{J/\psi\mathrm{N}}}\,\pm\,\delta\hat{\sigma}_{_{J/\psi\mathrm{N}}}) - \chi^2_{_{\mathrm{min}}} = 1$$

No longer true when correlated errors not properly taken into account !

Stump et al. 2002

Minimization

Cross section determined from the usual χ^2 minimization

$$\chi^2(\hat{\sigma}_{{\scriptscriptstyle J/\psi}{\scriptscriptstyle N}}) = \min\left[\chi^2(\sigma_{{\scriptscriptstyle J/\psi}{\scriptscriptstyle N}})\right]$$

with sophisticated definition of χ^2 to account for correlated errors

 1σ error $\delta\hat{\sigma}_{J/\psi N}$ defined as

$$\Delta\chi^2 \equiv \chi^2(\hat{\sigma}_{_{J/\psi\mathrm{N}}}\,\pm\,\delta\hat{\sigma}_{_{J/\psi\mathrm{N}}}) - \chi^2_{_{\mathrm{min}}} = 1$$

Rescaling of the 1σ error (PDG prescription)

$$\delta \bar{\sigma}_{J/\psi N} = \mathbf{S} \times \delta \sigma_{J/\psi N}$$

$$S \equiv \left[\chi^2 / (n-1)\right]^{1/2}$$
 if $\chi^2 / \text{ndf} > 1$

Data selection

- Data sets
 - SPS: NA3, NA38, NA50
 - FNAL: E537, E866, E672
 - RHIC: PHENIX
 - DIS : NMC
- J/ψ N energy range $\sqrt{s_{J/\psi N}} \simeq 6.5 25$ GeV
- Kinematic cuts
 - J/ψ suppression not really understood at large $x_{\!\scriptscriptstyle F}$
 - $x_{\rm\scriptscriptstyle F} \leq 0.3$ cut imposed to all hadroproduction data
- E772 data rejected because of a $x_F p_{\perp}$ correlation bias
- NA60 not used since only 1 nucleus available (at the time)

 $[\rightarrow]$

Data selection

Data selection

- Data sets
 - SPS: NA3, NA38, NA50
 - FNAL: E537, E866, E672
 - RHIC: PHENIX
 - DIS : NMC
- J/ψ N energy range $\sqrt{s_{J/\psi N}} \simeq 6.5 25$ GeV
- Kinematic cuts
 - J/ψ suppression not really understood at large ${\it x_{\rm F}}$
 - $x_F \leq 0.3$ cut imposed to all hadroproduction data
- E772 data rejected because of a $x_F p_{\perp}$ correlation bias
- NA60 not used since only 1 nucleus available (at the time)

Results

Global fit

$$\sigma_{J/\psi N}~=~3.4\pm0.2~{
m mb}$$

(
$$\chi^2/\mathrm{ndf}=1.4$$
)

Results

Main observations

- Clear tension between
 - NA3, E866, HERA-B
 - E537, NA38, NA50
- PHENIX data do not constrain much
 - need more d Au statistics
 - reduced systematic errors
- Muoproduction data consistent with no absorption

$$\sigma_{J/\psi N} \leq 0.9 \text{ mb}$$

 $\sigma_{_{J/\psi N}} \simeq 1{-}3~\mathrm{mb}$ $\sigma_{L/2/N} \simeq 4-7 \text{ mb}$

 $\sigma_{J/\psi N} = 3.5 \pm 3.0 \text{ mb}$

Similar result using nDS parton densities

$$\sigma_{J/\psi N} = 3.5 \pm 0.2 \text{ mb}$$
 $(\chi^2/\text{ndf} = 1.4)$

- Almost identical cross sections
- Same χ^2 than with proton densities

Similar result using nDS parton densities

$$\sigma_{J/\psi N} = 3.5 \pm 0.2 \text{ mb}$$
 $(\chi^2/\text{ndf} = 1.4)$

- Almost identical cross sections
- ullet Same χ^2 than with proton densities

...unlike using EKS98 parton densities

$$\sigma_{J/\psi N} = 5.2 \pm 0.2 \text{ mb}$$
 $(\chi^2/\text{ndf} = 1.6)$

because of the stronger antishadowing

$$\sigma_{J/\psi {
m N}}^{
m EKS} \simeq \sigma_{J/\psi {
m N}}^{
m nDS} ~+~ 2$$
 mb, except at RHIC

Comparing to more nPDF sets

	Proton	nDS	nDSg	EKS98	EPS08	HKM
$\sigma_{J/\psi { m N}}^{ m nPDF}$ (mb)	3.4 ± 0.2	3.5 ± 0.2	4.0 ± 0.2	5.2 ± 0.2	6.0 ± 0.2	3.6 ± 0.2
χ^2/ndf	1.4	1.4	1.5	1.5	1.7	1.4

Comparing to more nPDF sets

	Proton	nDS	nDSg	EKS98	EPS08	HKM
$\sigma_{J/\psi_{N}}^{\text{nPDF}}$ (mb)	3.4 ± 0.2	3.5 ± 0.2	4.0 ± 0.2	5.2 ± 0.2	6.0 ± 0.2	3.6 ± 0.2
χ^2/ndf	1.4	1.4	1.5	1.5	1.7	1.4

Global fit from all experiments and nPDF sets

$$\sigma_{J/\psi N} = 3.5 \pm 0.2 \text{ (stat.)} \pm 2.6 \text{ (syst.)} \text{ mb}$$

- Huge spread from the unknown gluon nPDF
- Extrapolation to higher energies (smaller x) even more problematic

Energy dependence

Naively, $\sigma_{_{J/\psi N}}$ should be a function of

$$\sqrt{s_{J/\psi N}} \simeq m_{J/\psi} \sqrt{\frac{1+x_2}{x_2}}$$

Energy dependence

ullet No statistically significant energy dependence of $\sigma_{{\scriptscriptstyle J/\psi N}}$ found in data

Energy dependence

...yet again this interpretation depends on which nPDF set is used!

Clearly, the study of J/ψ absorption in nuclei suffers from too large theoretical uncertainties on gluon nPDF – How to improve this?

Clearly, the study of J/ψ absorption in nuclei suffers from too large theoretical uncertainties on gluon nPDF – How to improve this?

nPDF sets currently use

- DIS on nuclei
- Drell-Yan in p A collisions
- Scaling violations in DIS on nuclei

valence quarks sea quarks

gluons

Clearly, the study of J/ψ absorption in nuclei suffers from too large theoretical uncertainties on gluon nPDF – How to improve this?

nPDF sets currently use

- DIS on nuclei
- Drell-Yan in p A collisions
- Scaling violations in DIS on nuclei

valence quarks

sea quarks

gluons

A few candidates for the gluon sector

- Jets
- Large p_{\perp} dileptons
- Heavy-bosons W^{\pm} , Z^0
- Prompt photons

Clearly, the study of J/ψ absorption in nuclei suffers from too large theoretical uncertainties on gluon nPDF – How to improve this?

nPDF sets currently use

- DIS on nuclei
- Drell-Yan in p A collisions
- Scaling violations in DIS on nuclei

valence quarks

sea quarks

gluons

What about using also heavy-quarkonium production?

- Surprising at first sight because of the inelastic interaction processes
- Accurate data on large kinematical range might give interesting constraints

Gluon nPDF from J/ψ data

The behavior of $G^A/G^p(x)$ pretty different from one set to another

- o nDS, HKM
 - rather flattish, (anti)shadowing not too pronounced
- nDSg, EKS98, EPS09
 - (anti)shadowing more pronounced
- EPS08
 - very strong gluon (anti)shadowing
 - related to the use of forward hadron production data at RHIC

Gluon nPDF from J/ψ data

- Behavior particularly different in the range $10^{-2} \lesssim x \lesssim 10^{-1}$
- A fast variation of $G^A/G^p(x)$ could be seen (in principle) in J/ψ data

Gluon shadowing and E866/NuSea data

- $10^{-2}\lesssim x_2\lesssim 10^{-1}$ corresponds to $0\lesssim x_{_F}\lesssim 0.3$ at $\sqrt{s_{_{PA}}}\simeq$ 40 GeV at the J/ψ mass scale
- Precise E866/Nusea measurements in this range

Gluon shadowing and E866/NuSea data

- $10^{-2}\lesssim x_2\lesssim 10^{-1}$ corresponds to $0\lesssim x_{_F}\lesssim 0.3$ at $\sqrt{s_{_{PA}}}\simeq$ 40 GeV at the J/ψ mass scale
- Precise E866/Nusea measurements in this range

Rather flat behavior which tend to rule out a fast variation of $G^A/G^p(x)$

Fitting E866/NuSea J/ψ data

- using all nPDF sets (proton PDF, nDS/nDSg, EKS98, HKM, EPS08)
- inelastic cross section as a constant free parameter

Fitting E866/NuSea J/ψ data

- using all nPDF sets (proton PDF, nDS/nDSg, EKS98, HKM, EPS08)
- inelastic cross section as a constant free parameter

Behavior consistent with nDS and HKM

Fitting E866/NuSea J/ψ data

- using all nPDF sets (proton PDF, nDS/nDSg, EKS98, HKM, EPS08)
- inelastic cross section as a constant free parameter

Conflict with nDSg and EKS98, worse with EPS08

 χ^2

nPDF set						
χ^2/ndf	0.5	0.6	12.0	10.1	35.9	1.2

Normalizations

	nDS	nDSg	EKS98	EPS08	HKM
$\sigma_{J/\psi N}$ (mb)	2.5	2.7	4.2	4.1	2.5
$\mathcal{S}_{\mathrm{abs}}$	0.89	0.88	0.82	0.82	0.89

Remarks

Caveat

- Assumption of constant absorption cross section can be questioned
- Suppose the absorption weakens with decreasing x_2 (increasing x_F) the disagreement would not be as pronounced

Remarks

Caveat

- Assumption of constant absorption cross section can be questioned
- Suppose the absorption weakens with decreasing x_2 (increasing x_F) the disagreement would not be as pronounced

"Fine tuning issue"

How come a very strong variation of $G^A/G^p(x)$ be perfectly balanced by nuclear absorption with opposite behavior, resulting into a constant J/ψ suppression? Rather unnatural

Summary

- Systematic study of J/ψ suppression in γ^* A and p A collisions
 - Results somehow spoiled by nPDF uncertainties
- Constraints on nPDF from specific J/ψ data sets
 - E866/NuSea favor nPDF sets with moderate variation in the $10^{-2} \lesssim x \lesssim 10^{-1}$ range