

The T2K Experiment: Status, Results and Prospects

Mathieu Guigue for the T2K Collaboration XIX International Workshop on Neutrino Telescopes February 22nd 2021

SCIENCES SORBONNE UNIVERSITÉ

SORBONNE UNIVERSITE Neutrino flavor and masses mixing LPNHE

Neutrino weak states: $\nu_e, \nu_\mu, \nu_\tau \rightarrow \text{production}$ and detection Neutrino mass states: $\nu_1, \nu_2, \nu_3 \rightarrow propagation$

If $(\nu_e, \nu_\mu, \nu_\tau) \neq (\nu_1, \nu_2, \nu_3)$ and non-degenerate masses \rightarrow Phase difference between mass states during propagation Different flavor state detected after propagation

- T2K Experiment NuTel21 February 22nd 2021

Neutrinos mixing matrix

Mass and flavor states mixing: $|\nu_i\rangle$

 $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 \\ 0 & 1 \\ -s_{13}e^{i\delta_{CP}} & 0 \end{pmatrix}$

U is **unitary** \rightarrow 3 angles θ_{ij} with $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$ \rightarrow 3 phases: δ_{CP} (Dirac phase) and η_i (Majorana phases) (Majorana phases don't show up in neutrino oscillations)

$$= \sum_{\alpha=1}^{3} U_{\alpha i} | \nu_{\alpha} \rangle$$

$$s_{13} e^{-i\delta_{CP}} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_{1}} & 0 & 0 \\ 0 & e^{i\eta_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$J_{\rm CP}^{\rm max} = \cos\theta_{12}\sin\theta_{12}$$

SCIENCES SORBONNE $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation probability in vacuum LPNHE $\int_{ij} \sin^2 \frac{\Delta m_{ij}^2 L}{4E} \pm 2 \sum \mathcal{U}_{ij} \sin 2 \frac{\Delta m_{ij}^2 L}{4E}$ serving **CP-violating** $\left(\frac{\Delta m_{13}^2 L}{4E_{\nu}}\right) + 8\frac{\Delta m_{21}^2}{\Delta m_{31}^2} J_{\rm CP}^{\rm max} \sin\left(\frac{\Delta m_{13}^2 L}{4E_{\nu}}\right) \cos\left(\frac{\Delta m_{13}^2 L}{4E_{\nu}} \pm \delta_{CP}\right)$ $\cos\theta_{23}\sin\theta_{23}\cos^2\theta_{13}\sin\theta_{13}$ ν or anti- ν Look for <u>appearing</u> electron neutrinos from muon neutrino beam • Difference between ν_{ρ} and $\bar{\nu}_{\rho}$ appearance if $\delta_{\rm CP} \neq 0, \pi$ CP violation only possible if all parameters are non zero • The sign of $\delta_{\rm CP}$ is related to the sign of Δm_{21}^2 and Δm_{31}^2 Neutrino actually propagating in matter (Earth crust) Modifies pattern differently for ν and anti- $\nu \rightarrow$ mimics CP violation Effect depends on the sign of Δm_{31}^2

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 \\ 0 & 1 \\ -s_{13}e^{i\delta_{CP}} & 0 \\ \text{Atmospheric and accelerator} & \theta_{13} \approx \\ \theta_{23} \approx 50^{\circ} & \theta_{13} \approx \\ \theta_{23} \approx 50^{\circ} & \text{Accelerator onl} \end{pmatrix}$$

Questions to long-baseline experiments:

- Value of CP violation phase δ_{CP}
- θ_{23} octant
- Mass ordering $\Delta m_{31}^2 \leq 0$?
- Consistency of the whole PMNS framework

SORBONNE (Some) open questions in neutrino physics LPNHE

T2K Collaboration

~500 members over 12 countries and 69 institutes

From Tokai To Kamioka

J-PARC

Near Detectors

Tokai

Super-Kamiokande

Oscillation analysis strategy $\delta_{\rm CP}, \ \sin^2\theta_{13}, \ \Delta m_{32}^2 \dots$

Neutrino spectrum prediction at far detector

PARIS

T2K Experiment — NuTel21 February 22nd 2021

10

11

Steady increase in beam power: 515 kW this year Run 1-10: 1.97 \times 10²¹ POT in ν mode and 1.63 \times 10²¹ POT in $\bar{\nu}$ mode

Data taking status

Year

14

Off-axis Near Detector at 280m (ND280) LPNHE

2.5° off-axis composite detector inside a 0.2 T Magnet:

- Two Fine Grained scintillating detectors FGD1 (CH) and FGD2 (CH,H₂O)
- Three Time Projection Chambers (TPCs) between FGDs
- One Upstream π^0 detector
- ECal surrounding inner detectors

FGDs used as neutrino targets **TPC for Particle Identification** Magnetization \rightarrow charge and momentum \Rightarrow Constraints on cross-sections, flux uncertainty model and wrong sign backgrounds

Neutrino interactions

Three dominant interaction channels: CCQE (and 2p2h) CC Resonant (RES) CC Deep Inelastic Scattering (DIS)

\rightarrow Define ND samples enriched in each of the processes using reconstructed pion multiplicity

 \rightarrow Constrain cross-section models for each interaction

ND280 samples

PARIS

X target detector (FGD1 or FGD2)

 \times beam mode (ν or anti- ν)

+1 sample ν events in anti- ν beam mode (constrain wrong-sign background) = 18 samples

SORBONNE Cross-section using Near Detectors LPNHE

Many interesting problems being tackled in neutrino interactions!

Recent analyses:

- \rightarrow First measurement of transverse kinematic imbalance in CC1 π^+ [02/2021] - First CC- $\nu_{\rho}/\bar{\nu}_{\rho}$ inclusive cross-section measurement [10/2020]
 - CC0 $\pi \bar{\nu}_{\mu}$ cross-section measurements on H₂O [07/2020]
 - CC0 $\pi \nu_{\mu}$ cross-sections on H₂O and CH [04/2020]
 - CC0 $\pi \nu_{\mu}/\bar{\nu}_{\mu}$ cross-sections on C and O [04/2020]
 - Combined ν_{μ} and $\bar{\nu}_{\mu}$ CC0 π cross-sections measurement [02/2020]
 - CC1 π^+ cross-sections on CH [01/2020]

Transverse kinematic imbalance in CC1 π^+ LPNHE

 ν_{μ} CC1 π^+ interaction on nucleus with at least 1 proton in FGD1:

Imbalance kinematic variables transverse to neutrino direction provide insights on Final State Interactions and nuclear initial state

T2K Result [Nucleon⁻¹cm²(MeV/c)⁻¹ NEUT RFG, χ^2_{tot} =11.3 GENIE BRRFG+hA, χ^2_{tot} = 5.2 GENIE LFG+hN, $\chi^2_{tot} = 8.6$ GiBUU, $\chi^2 = 3.6$ manahanani -200400

(b) $\delta \vec{p}_T$ and $\delta \alpha_T$.

$$+A \rightarrow \mu^{-} + \pi^{+} + p + A^{\prime}$$

Cross-section modeling for ND fit

- Tuning of baseline nuclear model (Spectral Function)
- 2p2h modeling: new uncertainty on energy dependence
- Improvements of nucleon-nucleus binding energy (momentum shift)
- Improved parametrization of CCDIS and CCN π models

- Improvements in this analysis to modeling of neutrino cross-sections

Near detector fit

Modeling of neutrino cross-sections Model after fit reproduces well the data (p-value of 0.74)

ND280 Run 2-9: 1.15×10^{21} POT in ν and 0.83×10^{21} POT in $\bar{\nu}$

Near detector fit

Modeling of neutrino cross-sections Model after fit reproduces well the data (p-value of 0.74) Introduction of anti-correlations between flux and cross-section parameters due to fit

Flux and Xsec Prefit Correlation Matrix

T2K Preliminary

T2K Preliminary

Near detector fit

Modeling of neutrino cross-sections Model after fit reproduces well the data (p-value of 0.74) Introduction of anti-correlations between flux and cross-section parameters due to fit

 \rightarrow Spectra prediction at far detector

 \rightarrow Flux and cross-section uncertainties reduction at SK from ~13% to ~4%

24

1,885 8" PMTs

50 kton of purified water 1000 m under Mount Ikeno

 $e-\mu$ identification et kinematics using Cherenkov ring pattern **No charge identification** (contrary to ND280)

OFFONNE OFF-axis Far Detector: Super Kamiokande LPNHE

Super-Kamiokande samples

Selection based on ring counting and shape

Sample	$ u$ -mode 1R μ	$ar{ u}$ -mode 1R μ	ν -mode 1Re	$\bar{\nu}$ -mode 1Re	ν -mode 1Re1de
Number of events	318	137	94	16	14
Total uncertainty (after fit) [%]	3.0	4.0	4.7	5.9	14.3
Total uncertainty (before fit) [%]	11.1	11.3	13.0	12.1	18.7

- Two samples with 1 μ -like ring (ν mode and anti- ν mode) $\rightarrow \nu_{\mu}$ -CC0 π
- Two samples with 1 e-like ring (ν mode and anti- ν mode) $\rightarrow \nu_e$ -CC0 π $\rightarrow \nu_{\rho}$ -CC1 π One sample with 1 *e*-like ring + 1 Michel electron ring

Disappearance results

 Δm_{32}^2 (NO) / $|\Delta m_{31}^2|$ (IO) [eV²] 2.65 2.6 2.55 2.52.4 2.35 2.3⊑ 0.3

Analysis using five SK Run 1-10 samples Upper octant preference (77.1% prob) from ν_{ρ} samples Normal hierarchy preferred at 80.8%

T2K Experiment — NuTel21 February 22nd 2021

Appearance results

See Joe Walsh's parallel talk

- 35% of values excluded at 3σ marginalized across hierarchies
 - favored
- CP conservation excluded at 90%
- Largest $\Delta \chi^2$ change seen in any of our robustness studies would cause left (right) edge of 90% interval to move by 0.073 (0.080)

T2K Experiment — NuTel21 February 22nd 2021

Reactor constraints impact on δ_{CP} vs θ_{13}

Constraints on θ_{13} compatible with PDG2019 at better than 1σ Using PDG2019 constraint on θ_{13} , better constraint on δ_{CP}

T2K's Bright Future

Combined analyses

(and potentially different systematic uncertainties) Two on-going combined analyses efforts: - T2K beam and Super-Kamiokande atmospheric data

- \rightarrow longer baseline and higher energy neutrino: more sensitive to mass ordering
- T2K and NO ν A beam data

 \rightarrow systematic uncertainties and longer baseline: more sensitive to mass ordering

TZH

- Experiments with different neutrino energies have different oscillation patterns

J-PARC main ring upgrades on-going

- 2x more pulse per second (One pulse every 1.3 seconds)

- Increase power from 515 kW to up to 1.3 MW

Boost statistical power during T2K-II **Prepare for Hyper-Kamiokande**

J-PARC beam upgrade

Impact on T2K physics

Better constraints on cross-sections - broader phase-space acceptance - increased statistical power

Selection	Current-like	Upgrade-like			
v_{μ} (v beam)	100632	199605			
\bar{v}_{μ} (\bar{v} beam)	32671	60763			
v_{μ} (\bar{v} beam)	16537	29593			

ND280 Upgrade TDR arXiv:1901.03750

See César Jesùs-Valls' parallel talk

Fantastic results during T2K-II era!

Exciting upgrades of beam and ND280

> Tackling interesting interaction questions

Summary and prospects

Sensitivity to

CP violation

Continuous data taking since 2009

World-leading measurements of oscillation parameters

Parallel session T2K talks

- imbalance measurement in T2K
 - Ka Ming Tsui \rightarrow Fri 19 10:20am
- Future neutrino physics using the upgraded ND280 detector of the T2K experiment César Jesús-Valls \rightarrow Wed 24 11:00 am T2K latest oscillation analysis results and methodology
- Joe Walsh \rightarrow Wed 24 5:50 pm
- T2K latest results on muon neutrino and antineutrino disappearance Siva Prasad Kasetti \rightarrow Wed 24 6:10 pm Ageing of the scintillator detectors of the T2K off-axis and on-axis near detectors,
- ND280 and INGRID

Maria Antonova \rightarrow Thu 25 12:10pm

• Probing nuclear effects in neutrino CC1 π^+ interactions with transverse kinematic

