

Université de Paris

IN2P3 contribution to PIP-II

Longuevergne David

On behalf of PIP-II team at IJCLab

09/02/2021

OUTLINE

• What is PIP-II

- Technical and scientific overview
- General status
- Project schedule
- IN2P3 contribution
 - Motivations
 - Scope of contribution
 - Deliverables
 - State of the art
 - R&D and upgrade for PIP-II
- Project management
 - Technical Review Plan and Schedule
 - Local organization
 - Cost distribution
 - Risk analysis

PIP-II Mission

PIP-II will enable the world's most intense beam of neutrinos to the international LBNF/DUNE project, and a broad physics research program, powering new discoveries for decades to come.

PIP-II linac will provide:

Beam Power

> Meeting the needs for the start of DUNE (1.2 MW proton beam)

Flexibility

- Upgradeable to multi-MW capability for LBNF/DUNE
- Compatible with CW-operations which greatly increases the linac output
- Customized beams for specific science needs
- High-power beam to multiple users simultaneously

Reliability

> Fully modernizing the front-end of the Fermilab accelerator complex

Courtesy of Lia Merminga

PIP-II Scope

800 MeV H- linac

Courtesy of Lia Merminga

- Warm Front End
- SRF section

Linac-to-Booster transfer line

• 3-way beam split

Upgraded Booster

- 20 Hz, 800 MeV injection
- New injection area

Upgraded Recycler & Main Injector

• RF in both rings

Conventional facilities

- Linac Tunnel includes 2
 empty slots
- Upgrade capability to 1GeV

WHAT IS PIP-II ? Technical and scientific overview

Technical and scientific overview

Technical and scientific overview

SSR CRYOMODULES												
IS LEBT RFQ ME	ΒΤ β=0.11	β =0.22 β	=0.47	β =0.61	β =0.92							
			sc —	-	, 							
	5 MHz D.3 MeV	325 M 10.3-185		0 MHz 800 MeV								
	SSR1	SSR2			42							
# CMs	2	7		1								
Cavities per CM	8	5		0 0								
Solenoids per CM	4	3		19-3-	- No							
CM configuration c: cavities; s: solenoids	4x (csc)	SCCSCCSC	1									
CM length (m)	5.2	6.5		Preliminary	design o							

First SSR1 prototype cryomodule

Courtesy of Lia Merminga

ary design of SSR2 cryomodule

Final design of SSR2 cavity

Conseil scientifique IN2P3 – IN2P3 contribution to PIP-II - Longuevergne

General status

General status

PIP-II IT : testing facility

17 MeV achieved

Courtesy of Lia Merminga

09/02/2021

Project Schedule

OUTLINE

- What is PIP-II
 - Technical and scientific overview
 - General status
 - Project schedule

• IN2P3 contribution

- Motivations
- Scope of contribution
- Deliverables
- State of the art
- R&D and upgrade for PIP-II
- Project management
 - Technical Review Plan and Schedule
 - Local organization
 - Cost distribution
 - Risk analysis

- Work in close collaboration with world-class accelerator laboratories
 - Improve technical skills : joint designs, benefit from lessons learned. « Win-win » collaboration.
 - Improve project management skills : high-level project management requirements at Fermilab (QA/QC)
- Be part of the development and construction of the world's highest energy and power CW proton linac
 - Proof of high skills and experience in the construction of superconducting linac (Spiral2, XFEL, ESS, MYRRHA, ...). IJCLab has been approached by Fermilab
 - World-wide recognition
 - Involve and qualify European and French companies for production phase
- Motivate and boost SRF R&D pursued at IN2P3
 - Bring new collaboration opportunities
 - Upgrade IJCLab facilities in term of availability and reliability
- Serve the international DUNE collaboration in which many French physicists, engineers and technician will be involved

Done

CONTRIBUTION DIVIDED INTO 2 PHASES :

- Prototyping (pre-production) phase (2020 2022) : aims at building components for the pre-production cryomodule and not meant to be installed on the accelerator
 - Joint design of accelerator components : implementation of lessons learned from both FNAL and IJCLab
 - Fabrication of accelerator components in both continents (when possible) : qualification of at least 2 manufacturers => mitigation of risks. For cavities (RI and Zanon), couplers (CPI, PMB), tuners (PSI).
 - Surface processing, testing and validation of accelerator components at FNAL and IJCLab
 - Final qualification at FNAL in horizontal cryostat (cavity+tuner+coupler)
- Fabrication of accelerator component of accelerator compon
 - Upgrade of facilities at IJCLab (CV1250)
 - Implementation of lessons learned in joint final design
 - Support to fabrication follow-up of 33 cavities (for 6 cryomodules + 3 yield). 1 cryomodule procured by DAE.
 - Qualification and validation in vertical cryostat of the 33 cavities.
 - Shipping of cavities to FNAL

Engage

To be done

CAVITIES :

- Prototyping Phase : 6 cavities built by 2 companies (Zanon and RI)
 - Support fabrication follow-up of 3 cavities
 - Optimization of surface processing on 4 cavities
 - Validation in vertical cryostat of 4 cavities
 - Shipping of 4 cavities to FNAL
- **Production Phase: 33 cavities**
 - Support fabrication follow-up of 33 cavities
 - Validation in vertical cryostat of 33 cavities
 - Surface re-processing of cavities at IJCLab ~ 25%
 - Shipping of 33 cavities to FNAL

COUPLERS:

- Prototyping Phase : 8 couplers
 - Procurement of 4 couplers (Done in November 2020)
 - Shipping of 4 couplers to FNAL
 - Support during coupler RF conditionning at FNAL
- Production Phase : X

TUNERS:

- Prototyping Phase : 5 tuners
 - Procurement of 5 tuners

(Done in November 2020)

- Validation in vertical cryostat of 5 tuners
- Shipping of 5 tuners to FNAL
- Production Phase : X

IN2P3 CONTRIBUTION TO PIP-II Deliverables

IN2P3 CONTRIBUTION TO PIP-II Deliverables

PRODUCTION PHASE (2022 – 2026)

OUTLINE

- What is PIP-II
 - Technical and scientific overview
 - General status
 - Project schedule
- IN2P3 contribution
 - Motivations
 - Scope of contribution
 - Deliverables
 - State of the art
 - R&D and upgrade for PIP-II
- Project management
 - Technical Review Plan and Schedule
 - Local organization
 - Cost distribution
 - Risk analysis

IN2P3 CONTRIBUTION TO PIP-II

State of the art (SUPRATECH Platform)

+ Material science lab

- SIMS

- Confocal microscope
- SEM (EDS, EBSD)
- SEY measurement

+ Other

- RRR measurement (Supratech)
- Conductivity (Supratech)
- TEM (Jannus Platform)

IN2P3 CONTRIBUTION TO PIP-II State of the art (ESS)

- PIP-II specifications not conservative, very ambitious specifications (Qo > 9^E9 @ Eacc = 11.5 MV/m, Eaccmin = 13.7 MV/m).
- Most of validated ESS cavities meet these specifications (14/16)
- Validation yield for production ESS cavities
- $\Rightarrow \ {\rm Reprocessing\ mainly\ due\ to\ field\ emission\ and} \\ {\rm induced\ quench}$
- $\Rightarrow \ {\rm Reprocessing \ for \ frequency \ tuning \ not} \\ {\rm considered}$

IN2P3 CONTRIBUTION TO PIP-II

State of the art (MYRRHA)

- 3 over 4 MYRRHA prototypes meet PIP-II specifications.
- \Rightarrow BSC03 surface processing not optimal
- R&D engaged during MYRRHA and to be pursued for PIP-II
- ⇒ Removal of flash BCP after furnace treatment (N2 Infusion-like process)
 - ✓ Higher Qo
 - Less steps in cavity life cycle
 - ✓ Less risks
 - Frequency tuning possible after furnace treatment and without post-BCP?
- ⇒ Test of Nitrogen infusion/doping low frequency cavities (F<1.3 GHz)
 - ✓ Unsuccessful 1st test on 1.3 GHz elliptical cavity (IRFU)
 - ✓ Furnace upgraded at IJCLab (N2 injection line)
 - Se ✓ Qua ne cavi
- Qualify process on 1.3 GHz elliptical cavity
 - Test on a MYRRHA cavity (352 MHz, 726 MHz and 1.3 GHz)

What kind of R&D and upgrades are integrated and necessary for PIP-II ?

	CAVITY	COUPLER	TUNER		
	 Optimization of BCP process (rotational) Improve surface state Lower surface contamination Improve homogeneity of material removal 	 Mitigation of multipacting Qualify efficiency of TiN coating during power conditionning (2 prototypes with TiN coating and 2 without) 	 Optimization of switch limit system Improve robustness Use standard components 		
Prototyping	 Removal of flash BCP after furnace treatment Improve Qo (doping effect) Simplify cavity life cycle Mitigate of risks 	 Necessity of power conditionning ? Study benefit of conditionning with / without bias Simulate the loss of bias during operation 	 Aging test at Nitrogen temperature Simulate several years of operation Qualify robustness of full system Identify weak points and upgrade 		
	 Optimization of magnetic shielding in cryomodule Measure magnetic sensitivity of cavity Evaluate impact of cooling conditions and magnetic hygiene 				
	 Technology transfer of surface processing to industry Work with companies and check compatibility of their facilities Perform surface treatment at companies (BCP, furnace,) 				
	 Upgrade of Supratech infrastructure Improve reliability with new cryostat Improve availability with upgraded helium supply chain 				
Production	 Statistics Analyze impact of surface processing on performances Lessons learned/best practice Build a model and address loss mechanisms 	Ponctual support (expertise) to FNAL team			

PROTOTYPING PHASE (2020 – 2022)

<u>CV800</u> : In operation but not optimal for production

PRODUCTION PHASE (2024 – 2026)

<u>CV1250</u> : Existing but not operational

- Drill pit
- Equip with platform and shields
- Cryogenic distribution
- C&C (PLC)
- RF system
- Vacuum systems

OUTLINE

- What is PIP-II
 - Technical and scientific overview
 - General status
 - Project schedule
- IN2P3 contribution
 - Motivations
 - Scope of contribution
 - Deliverables
 - State of the art
 - R&D and upgrade for PIP-II
- Project management
 - Technical Review Plan and Schedule
 - Local organization
 - Cost distribution
 - Risk analysis

09/02/2021

Schedule

Completion of CV1250 end of 2023

1. Between FNAL and IJCLab

- regular (almost weekly during very active period) technical meetings between Fermilab and IJCLab.
- Bi-weekly meeting (Technical coordinators of IJCLab and FNAL) : Status and Urgent Matters
- monthly "All partners" meeting involving Fermilab, DAE and IJCLab to exchange on technical advances specifically on Spoke Cryomodules (SSR1 and SSR2)
- monthly reporting including delivery forecast, achievements of the month, near term milestones, issues and possible recovery actions and priorities for next reporting period
- trimestrial coordination meeting named P2PEB (PIP-II Project Executive Board) involving all partners of the collaboration and serving as
 a forum to exchange on project updates (technical advances, project management, ...) and as an international configuration change
 board.
- yearly technical workshop aiming at exchanging between all partner's experiences and lessons learned on specific topics decided by technical coordinators and a scientific committee.

2. Between IN2P3 and IJCLab

- Yearly review by IN2P3 direction (Entretien Annuel Projet) of project status, encountered difficulties, project forecast of following years.
- Communication on demand

3. Within IJCLab

- Weekly meeting with all work-package leaders: check status, actions, risks, schedule
- Yearly review by CEMAP : inform IJCLab direction about project status, difficulties, ...

Project Management

International Organization

Levels			PIP-II Part	ner Institutions Co	ollaboration			PIP-II Governance
	US	India	UK	Italy	France	France	Poland	
Agencies	DOE	DAE	UKRI	INFN	CEA	CNRS/IN2P3	WUST	
1. Principal Coordinators	J. Siegrist	A. K. Mohanty	M. Thomson	A. Zoccoli	A-I Etienvre	J-L. Biarrotte	TBD	International Neutrino Council
2. Laboratory Directors	N. Lockyer	A. K. Mohanty D. Das	N. Geddes	M. Pallavicini	P. Védrine	A. Stocchi	C. Madryas	PIP-II Directors Council (P2LDC)
3. Technical Coordinators	L. Merminga	S. Krishnagopal P. Shrivastava	P. McIntosh	C. Pagani	O. Napoly	D. Longuevergne	M. Chorowski	PIP-II Project Executive Board
4. Sub-Project Managers/Coordinators	FNAL SPMs	DAE SPCs	STFC SPCs	INFN SPCs	CEA SPCs	CNRS/IN2P3 SPCs	WUST SPCs	
Levels			PIP-II Par	tner Institutions	Collaboration			PIP-II Governance
	US	India	UK	Italy	France/CEA	France/CNRS/IN2P3	Poland/WUST	
Agencies	DOE	DAE	UKRI	INFN	CEA	CNRS/IN2P3	WUST	1
1. Principal Coordinators	OHEP Assoc Director	BARC Director	STFC Exec Chair	INFN President	Head, IRFU	Scientific Director, Accel & Techn.	TBD	International Neutrino Council (INC)
2. Laboratory Directors	FNAL Director	BARC Director RRCAT Director	Exec Director Nat'l Lab's	Member, INFN Exec Board	Head, DACM	IJCLab Director	Rector, Faculty of Civil Engineering	PIP-II Directors Council (P2LDC)
3. Technical Coordinators	PIP-II Project Director	DAE TCs	STFC TC	INFN TC	CEA TC	CNRS/IN2P3 TC	WUST TC	PIP-II Project Executive Board
4. Sub-Project Managers/Coordinato	FNAL SPMs	DAE SPCs	STFC SPCs	INFN SPCs	CEA SPCs	CNRS/IN2P3 SPCs	WUST SPCs	l I

Project Management Local Organization and human ressources

09/02/2021

Project Management Local Organization and human ressources

09/02/2021

Project Management Local Organization and human ressources

HR distribution over the years for PIP-II 9 0 2017 2018 2019 2020 2021 2022 2023 2024 2025 202 Years Scientists - PIP-II Engineers - PIP-II SUPRATECH CRYOGENIC & RF Services CDD

TOTAL (Permanents + CDD)

TOTAL (Permanents) hors CDD)

HR COST

2 950 842.00 €

2 044 830.00 €

FTE

38.3

26.3

Nom des personnes	Statut	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Total (FTE)
Scientists - PIP-II		0%	14%	42%	65%	65%	65%	50%	40%	30%	20%	3.91
D. Longuevergne	Responsable scientifique		14%	35%	50%	50%	50%	40%	30%	20%	10%	2.99
H. Guler	Expertise conditionnement coupleurs			7%	10%	10%	10%	5%	5%	5%	5%	0.57
W. Kaabi	Conseil coupleur				5%	5%	5%	5%	5%	5%	5%	0.35
TOTAL (FTE)		0.00	0.14	0.42	0.65	0.65	0.65	0.50	0.40	0.30	0.20	3.91
Nom des personnes	Statut	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Total (FTE)
Engineers - PIP-II		0%	17%	90%	180%	180%	160%	150%	145%	135%	70%	11.27
P. Duchesne	Responsable technique + lot cavité		12%	35%	50%	70%	70%	85%	90%	90%	50%	5.52
N. Gandolfo	Responsable Lot Tuner			15%	35%	35%	35%	15%	10%	10%	5%	1.60
S. Wallon	Responsable Lot Coupleur			15%	25%	25%	25%	5%	5%	5%	5%	1.10
D. Reynet	Ingénieur Système		5%	10%	10%	10%	10%	10%	10%	10%	5%	0.80
V. Poux	Responsable Qualité IJCLab			10%	10%	10%	10%	10%	10%	10%	5%	0.75
S. Roset	Conception outillage/mécanique			5%	50%	30%	10%	25%	20%	10%		1.50
SUPRATECH		0%	0%	0%	0%	40%	140%	0%	95%	95%	0%	3.70
T. Pépin-Donat	Opérateur four et planning SUPRATECH					5%	25%		15%	15%		0.60
L. Renard	Opérateur Salle blanche SUPRATECH					10%	30%		25%	25%		0.90
N. Bippus	Opératrice Salle Blanche SUPRATECH					10%	30%		25%	25%		0.90
F. Rabehasy	Opérateur Salle Chimie SUPRATECH					5%	25%		15%	15%		0.60
L. My Vogt	Opérateur Salle Chimie SUPRATECH					10%	30%		15%	15%		0.70
CRYOGENIC & RF Serv	ices	0%	0%	0%	0%	100%	180%	200%	160%	100%	0%	7.40
F. Gallet	Opérateur Liquéfacteur + Upgrade CV1250					10%	20%	20%	20%	20%		0.90
M. Pierens	Opérateur Liquéfacteur + Upgrade CV1250					25%	40%	50%	40%	5%		1.60
F. Chatelet	Gestion cryo Cryostat					10%	20%	20%	20%	20%		0.90
G. Mavilla	Instrumentation + gestion cryo Cryostat + upg	grade CV	1250			25%	40%	40%	40%	30%		1.75
D. Le Dréan	Opérateur RF Cryostat					10%	20%	20%	20%	20%		0.90
S. Blivet	Infrastructure upgrade CV1250					10%	20%	20%	10%			0.60
TBD	Ingénieur radio-protection						10%	10%				0.20
TBD	Ingénieur RF Upgrade CV1250					10%	10%	20%	10%	5%		0.55
CDD		0%	0%	0%	0%	0%	75%	325%	400%	325%	75%	12.00
TBD	Contrôleur projet						25%	100%	100%	75%		3.00
TBD	Ingénieur qualité						25%	100%	100%	75%		3.00
TBD	Instrumentation + gestion cryo Cryostat + QC						25%	100%	100%	75%		3.00
TBD	Instrumentation + test RF + QC							25%	100%	100%	75%	3.00
TOTAL (FTE)		0.00	0.17	0.90	1.80	3.20	5.55	6.75	8.00	6.55	1.45	34.37

09/02/2021

The project cost is estimated at 5.7 million euros including FTE (permanent and non-permanent staff). The personnel cost is about 3 million euros including 900 k€ of non-permanent staff.

- In 2018, 2019 and 2020 : real costs (spent)
- Between 2021 and 2025 : requested budget with margin between 15% and 50% depending on risks and confidence of cost estimation (Helium, infrastructures).
- Distribution optimized to smooth yearly budget
- Full cost and distribution to be revised each year before IN2P3 project review (EAP)
- For 2021, budget allocated is 390 k€

	M&S											
		J	± 2018	E 2019	± 2020	± 2021	± 2022	± 2023	± 2024	± 2025	± 2026	Total général
Étique	ttes de ligne	S 🖵	t									
⊞WP1	managemer	nt	16	13		14	29	29	29	29	29	187
⊞WP2	Cavité		17	25	11	165	182	85	423	305		1214
⊞WP3	Tuner			23	42	21	0	0				86
🗄 WP5	Coupler				370	35	0	0				405
⊞WP6	Supratech (CV1250)				191	239	404				834
Total g	énéral		33	61	423	426	450	518	452	333	29	2725

	Non permanent to be hired		± 2022	± 2023	± 2024	± 2025	± 2026	Total général
Étiquette	es de lignes	Ŧ]					
🗏 WP1 m	anagement		43	172	172	172	43	601
IR QA	\&QC		21	86	86	86	21	300
IR Pr	oject Controller		21	86	86	86	21	300
🗏 WP2 Ca	avité		15	77	123	123	31	368
2 CD	D cavité (1 AI, 1 IE pour inspection et tes	ts cryo)	15	77	123	123	31	368
Total gén	éral		58	248	294	294	74	969

STATUS OF RISK ANALYSIS:

- Step 1: Risk identification, integration in the project risk register
- Step 2: Risk assessment
- Step 3: Definition of actions for risk mitigation
- Step 4: Follow-up of preventive and corrective actions and risk control
- Step 5: Improve experience feedback (lessons learned)

Risks level definition

Risk criticity

	Low Impact	Medium Impact	High Impact		Low Impact	Medium Impact	High Impact
Technical Impact	Somewhat sub-standard	Significantly sub-standard	Extremely sub-standard or KPP in jeopardy	Very High. 64-100%	Medium	High	High
Technical Impact	Can be repaired by the team	Can be repaired within IJCLab	Can be repaired only with external parties	High 39-64%	Medium	High	High
Cost Impost	< 1% of project cost	1% - 5% of project cost	> 5% of project cost	Medium 21-39%	Low	Medium	High
Cost Impact	< 25 k€	25k€ - 100k€	> 100k€	Low 9-21%	Low	Medium	Medium
Schodulo Import	< 2% of project duration	2 - 5 % of project duration	> 5 % of project duration			Low	Medium
Schedule Impact	<1 month	1 - 3 months	> 3 months	Very Low 0-9%	Low	Low	Medium

Risk analysis and mitigation plan

Preliminary analysis (systemic)

DESCRIPTION	Probability	Schedule impact (month)	Cost impact (k€)	P* schedule impact (months)	P* cost impact (k€)						
	Technical										
RF test forbidden due to ASN restrictions	5	6		0.3	0						
Accident during BCP etching	5	2		0.1	0						
Accident during cavity handling	5	1		0.05	0						
	Man	agement									
Human ressources not available due to other projects	25	1		0.25	0						
Difficulties to hire temporary workers	25	3		0.75	0						
Loss of a temporary worker (resignation)	25	3		0.75	0						
funding lost because of delay in activities (yearly funding)	25	0	200	0	50						
Cavity loss or damages during transportation to FNAL	1	1	150	0.01	1.5						
Custom fees not waived on time because of incomplete procedure	10	0	50	0	5						
	Ex	ternal									
Increase of helium cost	50	0	50	0	25						
Qualified vendors not available for production	10	6	0	0.6	0						
More than 25% of production cavities have to be re-processed	50	4	50	2	25						
Testing facilities not/partially available because of other projects	25	6	0	1.5	0						
Clean room not/partially available because of other projects	25	6	0	1.5	0						
CV1250 not operational	10	6	0	0.6	0						

Risk evaluation

Risks	Schedule	Cost
NISKS	(month)	(k€)
Systemic	6.41	81.5
Technical (cavity)	5.185	155.34
TOTAL	11.6	237

- Technical risks on cavity hold by FNAL.
- 3 critical risks identified :
 - Funding loss because of delays
 - o Increase of helium cost
 - Re-processing rate of cavities
- Mitigation strategies:
 - Re-allocate budget within the year or anticipate expenses
 - o Improvement of facilities (reduction of helium losses)
 - Coach and involve companies already in prototyping phase (under discussion with 2 companies involved in prototyping phase)

CONCLUSION (1)

- IN2P3 will contribute significantly to PIP-II project in both prototyping and production phase
 - Deliverables for prototyping phase (tuner and couplers) but not for production (since no TGIR funding).
 - Production phase consists in providing support (joint design), expertise (lessons learned) and service (cavity validation and shipping).
 - Full scope funded by IN2P3.
- Motivations are numerous:
 - <u>Technical</u> : Improve technical and project management skills. « Win-win » collaboration.
 - <u>Scientific</u> : Motivate SRF R&D pursued at IN2P3 and boost collaborations.
 - <u>Political</u> : Serve the international DUNE collaboration in which many French physicists involved.
- IJCLab well positionned:
 - FNAL is relying on IJCLab for validation of Spoke cavities in Europe (unique expertise and facilities).
 - Technical specifications for PIP-II SSR2 cavities are today met by most of ESS and MYRRHA cavities.
 - R&D program is defined to increase cavity validation yield and components reliability.
 - IJCLab can handle safely and successfully the cavity validation rate for production phase (~2 cavities/months) provided that current facilities are upgraded (Installation of new existing vertical cryostat CV1250).

CONCLUSION (2)

- Project management
 - Communication between FNAL and IJCLab is well established, monthly report to be started soon •
 - PIP-II team at IJCLab is organized and sufficient to ensure completion of prototyping phase
- Human ressources Hiring of non-permanent dedicated personnels will be required for production phase. QA engineer and project controller will be required as well as 1 technical staff for cavity QC (best 1 for cavity testing for risk mitigation).
 - FNAL and IJCLab schedules are aligned and well defined. General schedule is ambitious but most of « pressure » is hold by FNAL (procurements).
 - Schedule will tend to shift (sanitary crisis, ...) •
 - Total project cost estimated at 5.7 million euros for IN2P3 (3 millions for staff, 2.7 millions for M&S)
 - Cost distribution has been smoothened to fit yearly IN2P3 funding capabilities.
 - Margins (15%-50%) are included in total cost and refinement will be performed on a yearly basis. ٠
 - Funding profile is very restrictive (expiring every year) but re-allocation or anticipation is possible.
 - Preliminary risk analysis outputs are acceptable in term of potential delays and extra cost.
 - FNAL is holding most of technical risks (procurement). ٠
 - IJCLab team highly motivated and already highly involved in prototyping and R&D ٠

COSL

SWOT

Strengths:

- Team is well experienced in series production (ESS) of Spoke resonators
- Current facilities are fully compatible with PIP-II Spoke resonators
- Technology transfer (surface processing of Spoke resonator and power coupler) to industries with which a lot of projects/interactions are already going on <u>Weaknesses:</u>
- Some facilities need to be upgraded (vertical cryostat) to handle efficiently the series production (risk mitigation).
- IN2P3 funding is tight and might have difficulties to ensure complete funding (non-permanent human ressources + facilities upgrade)
- Profil of IN2P3 funding. Yearly funding will add uncertainties and difficulties to manage the project
- Too many key permanent staff: today human resources is sufficient but what about tomorrow in case of resignation?

Opportunities:

- Collaborate with Fermilab, one of the most experienced accelerator lab of the world, not only on PIP-II but also on R&D topics like Nitrogen doping/infusion.
- Collaborate with a lab very advanced in project managements methods
- Benefit from experience and lessons learned of the full collaboration
- Work on a world-class project with very high visibility
- Improve IJCLab's facilities for PIP-II and future projects.

Threats:

- On-going project ESS is delayed and could impact significantly PIP-II prototyping phase schedule
- Potential new projects (MYRRHA series production) could happen in the same period.
- Delays or extra cost due to export/import difficulties (VAT exemption)
- See risk analysis

BACK-UP SLIDES

Conseil scientifique IN2P3 – IN2P3 contribution to PIP-II - Longuevergne

Contexte général

– Avancées projets :

- PIP-II GROUNDBREAKING le 15 mars 2019
- 6 réunions de coordinations (P2PEB meeting : PIP-II Project Executive Board)
- Revue DOE CD2 le 28 janvier 2020.
- COVID-19 : retards conséquents sur le projet (CD-4 retardée de 15 mois à décembre 2028).
- Eté 2020 : retour de MESRI sur financement TGIR (PIP-II -> CEA, DUNE -> CNRS).
- Revue CD2 IPR le 6 octobre 2020 (revue des contributions In-Kind)
- Décembre 2020 : Ajustement final de la contribution IN2P3

- Avancées techniques :

- CAVITE SSR2 :
 - Novembre 2019 : Commande du Niobium par FNAL chez Ningxia
 - Novembre 2019 : Revue finale cavité (FDR) à FNAL avec IJCLab
 - Mars 2020 : Publication appel d'offre cavités prototypes (FNAL + IJCLab)
 - Octobre 2020 : Livraison Niobium après validation échantillons par FNAL (RRR + méca)
 - Octobre 2020 : Commande des cavités prototypes 3 pour IJCLab + 3 FNAL (FNAL)
 - Février 2021: Revue outillage cavité pour commande (IJCLab, FNAL)

• TUNER SSR2 :

- Novembre 2019 : Revue finale Tuner (FDR)
- Janvier 2020 : Réception des 12 actionneurs piezo.
- Mars 2020 : Réception cartouche SSR1 pour test vieillissement dans boite à SAF.
- En cours : CCTP en cours de finalisation

• COUPLEUR DE PUISSANCE SSR2 :

- Début 2020 : finalisation des simulations thermiques RF
- Mai 2020 : Revue finale Coupleur (FDR)
- Juillet 2020 : Publication appel d'offre pour 4 coupleurs prototypes (IJCLab)
- Septembre 2020 : Réception de 2 offres.
- Octobre 2020 : commande des 4 coupleurs prototypes (IJCLab)
- Janvier 2021 : commande des 6 cavités prototypes (FNAL)

ANALYSE DE RISQUE EN COURS

Organization chart at FNAL

Conseil scientifique IN2P3 – IN2P3 contribution to PIP-II - Longuevergne

Detailed cost distribution

Somme de Cout (base+inœrtitude)	Étique™ ⊕2018		⊞ 2020	⊞ 202 1	± 2022	⊞ 2023	⊕ 2024	⊕ 2025	€ 2026	Total général
Étiquettes de lignes	T									
■WP1management	16	13		14	72	200	200	200	72	788
Pre-production	16	13		14	29					72
mission	16	13		14	29					72
Travels+meeting organization (semaines)	16	13		14	29					72
Production					43	200	200	200	72	716
■ CDD					43	172	172	172	43	601
IR QA&QC					21	86	86	86	21	300
IR Project Controller2					21	86	86	86	21	300
mission						29	29	29	29	115
Travels+meeting organization (semaines)						29	29	29	29	115
■WP2 Cavité	17	25	11	165	198	162	546	427	31	1582
Pre-production	17	25	11	165	102					321
mission				23						23
Fabrication follow-up of cavity and QC test (jours)				23						23
Equipement IJCLab	17	21		92						130
Fabrication follow-up of cavity and QC test (endos)				35						35
Tooling for pre-prod cavity preparation and test				58						58
Cavity design (simulation code)		6								6
RF components for vertical test (Amplifier, coupler, cir	rc 17	-								20
Magnetic sensor for vertical test		12								12
Equipement Livrable		4	11	26						42
Cavity vacuum valves		2								2
Motors for moving coupler				14						14
RF feedthrough Qi et Qt and blank flange intermediate			11							11
RF feedthrough Qi et Qt and blank flange for final test				13						13
Cryogenic components for vertical test		2								2
Consommables				24						126
Cavity surface processing at IJCLab (BCP+Four+HPR)				14						54
Cavity validation in vertical cryostat (cryostat + hélium)			11						42
Transport FNAL					30					30

Somme de Cout (base+inœrtitude)	Étique									
	± 2018	± 2019	± 2020	± 2021	± 2022	± 2023	± 2024	± 2025	± 2026	Total général
Production					96	162	546	427	31	1262
⊟ ĆDD					15	77	123	123	31	368
2 CDD cavité (1 Al, 1 IE pour inspection et tests cryo)					15	77	123	123	31	368
🗏 Equipement IJCLab							58			58
Tooling (duplicate)							58			58
Equipement Livrable					80					80
Cavity vacuum valves					25					25
RF feedthrough Qi and Qt					55					55
Consommables						85	366	305		755
Cavity surface reprocessing at IJCLab (reprocess + valida	tion)						73	61		134
Cavity validation in vertical cryostat (cryostat + hélium)							158	131		289
Fabrication follow-up of cavity and QC test						85				85
Transport of cavity + tuner to FNAL (crate for cavity + tra	nsport)						135	113		248
□WP3Tuner		23	42	21						86
Pre-production		23	42	21						86
Equipement Livrable		23	42	15						80
Instrumentation piezo				12						12
Matériel fin de course				3						3
Tuner procurement (5)		•••	37							37
Piezo actuator procurement for 5 Tuner		23	_							23
Specific screws for 5 tuners			5							5
Consommables				6						6
Aging test				6						6
WP5 Coupler			370	35						405
Pre-production			370	35						405
Consommables			370	35						405
Transport of coupler to FNAL				23						23
Coupler Procurement (4)			370							370
Outillage QC coupleur (transition type N-> guide d'onde	:)			12						12 834
WP6 Supratech (CV1250) Production				191	239	404				
				191 191	239 239	404 404				834 834
Equipement IJCLab				191	239	404				
Upgrade of IJCLab facilities (cryogenic lines for CV1250)	alding C	C for C	117501	102	210	375				315 375
Upgrade of IJCLab facilities (infrastructure platform, shi Upgrade of IJCLab facilities (RF)	eraing, Ca	SC TOF C	(1220)		29	3/5 29				3/5
Upgrade of IJCLab facilities (RF) Upgrade of IJCLab facilities (vacuum components for CV	1350)			86	29	29				58 86
	33	61	423	426	508	766	746	628	102	3694
Total général	55	01	443	426	508	/00	/46	028	102	5694

Human ressources evaluation (SUPRATECH)

Prototyping Phase

Production Phase

4 cavités (6 tests)

33+8 cavités à tester (8 à reconditionner)

Туре	Description	Semaines	FTE	Semaines	FTE
	1 semaine/cav + prep 4				
recep	semaines	8	19%	8	19%
	0.5 semaine/cav + prep 4				
ВСР	semaines + test bare cav	11	26%	12	29%
	2 semaines/cav + prep 4				
Salle blanche	semaines	16	38%	20	48%
Four	0.5 semaine/ cav + 1 semaine	3	7%	5	12%
	1 semaine/ test + prep 4				
cryo	semaines	8	19%	25	60%
	0.5 semaine/test + prep 4				
test RF	semaines	6	14%	14.5	35%
	1 semaine/test + prep 4				
montage	semaines	10	24%	25	60%

SSR2

Cavity

- Integrated design team: Fermilab, IN2P3 and DAE
- RF design completed
- Niobium production at vendor completed
- Prototype jacketed cavity procurement in progress
- SSR1 Coupler power capability demonstrated at >20 kW;
 - procurement is in progress

Cryomodule

• Design in progress by Fermilab, DAE

45

11/16/20

20

SSR2 Single Spoke

- RF design done at Fermilab
- Collaborative mechanical design FNAL/IPNO/BARC

Jacketed Cavity

Bare Cavity

✓ Material : Bulk Niobium ✓ $\beta = 0.472$ ✓ $F_0 = 325$ MHz ✓ T : 2K ✓ Eacc : 11.5 MV/m ✓ Bpk/Eacc = 6.75 mT/MV/m ✓ Epk/Eacc = 3.5 ✓ r/Q = 305 Ω ✓ G = 115

i

Frequency shift during manufacturing, processing & test

Summary

➢ For all multiphysics analyses presented here, there's a good correlation between the FEM results and the measurements (SSR1, MYRRHA or ESS cavities)

➤The DFDP has been minimized and meets the TRS

➤The LFD has been minimized but doesn't meet the TRS with a tuner stiffness of 30 kN/mm

➤The longitudinal stiffness of the cavity slightly exceeds the TRS value

>The tuning sensitivity meets the TRS

	TRS Value	FDR model
Sensitivity to LHe pressure fluctuations of dressed cavity, Hz/mbar	< 25	-0.35
Lorentz Force Detuning coefficient, Hz/(MV/m) ²	< 4	-4.73
Longitudinal stiffness, kN/mm	< 16	16.7
Tuning sensitivity, kHz/mm	> 250	308
Leak check, kHz	-	-190.5
Cool down from 293K to 2K, kHz	-	+456.8
Trimming 1mm added on each side, kHz	_	+289.4

6 November 2019

Processing capabilities at IJCLab : SUPRATECH Platform

03/12/2020

No flash BCP after heat treatment

Preliminary cavity flow chart for cavity surface processing

Charge 1e 😤 Fermilab

SSR2 bare cavities processing and testing flow

Upgrades for PIP-II : SSR2 prototype cavity processing

1. Improvement of BCP procedure

- How to have a better homogeneity of material removal ?
- How to avoid surface traces and white marks (coming from bubbles resting)

- Semi-rotational BCP bench (+/-180°) at ~ 1 rpm
- Allow mixing of BCP mixture during the full process
- Avoid creation of bubbles
- Allow homogeneous water rinsing after acid draining

03/12/2020

- Mechanical design completely done by FNAL
- Aging test of full system motor cartridge

SSR2 Tuner aging

	j1	j2	j3	j4	j5	j6	j7	j8	j9	j10	j11	j12	j13 j1	14 j	j15 j	16 j1	.7 j18	j19	j20	j21	j22	j23	j24	j25	j26	j27 j2
		Set	tting	g up	pha	ase			En	dura	ance	e ph	ase		-	gulat ohas		F	loldi	ng p	oha	se			End	
Visual inspection																										
Installation																										
Coold down																										
Endurance																										
Regulation																										
Holding																										
Warm-up																										
Idle																										

Motor cartridge tests definition - Nicolas Gandolfo - IJCLab

Charge 1

‡ Fermilab

Summary

TRS parameter	Value	FDR results
Tuner passive stiffness, kN/mm	≥30	36.2
Slow tuner frequency range, kHz	≥ 130	157
Stepper motor resolution, Hz/step	≤ 9.5	3.7 (4.8 max)
Maximum force on the spindle system, N	1300	1293 (for 157 kHz)
Piezo tuner frequency range, Hz	≥ 700	1136
Piezo tuner frequency resolution, Hz	≤ 0.5	\checkmark
Maximum operating force (each piezo capsule), N	2000	1863

SSR Coupler

19/11/2019

FDR Prototype SSR2 Cavity

SSR Coupler

– Thermal analysis performed in parallel at IJCLab with Ansys (HFSS/Mechanical) : S. Wallon

		Work cases	1	2	2bis	2ter	3			Work cases	5	Fermilab's calc (Serguey Kazakov)		Work cases	6	7	8	8bis
		295K thermal straps thermal conductance (4 straps / coupler)	No straps (no heat exchange)	0.124W/K	0.124W/K	0.24W/K	0.124W/K		295K thermal straps thermal conductance (4 straps / coupler)	0.124W/K	0.124W/K		295K thermal straps thermal conductance (4 straps / coupler)		0.124	₩/ĸ		
		Air flow		0			On (2g/s)			Air flow	On (2g/s)	On (3 g/s)		Air flow		On (3g/s)		On (2g/s)
		Note about boundary conditions (BC)			Radiation to ambient BC adding 0.78W to				Τ	at 2 K (i.e. cavity part at He temp)	-0.218	-0.26		at 2 K (i.e. cavity part at He temp)			-0.260	
	_	at 2 K (i.e. cavity part at He temp)		-0.172	ceramic -0.173	-0.176	-0.176	Heat	model		-0.500	-0.90	Heat	at 2 K w/ extra load from radiation study			-0.542	
Heat	e mode	at 5 K (thermal strap end x2)	Not relevant	-1.99	-2.00	-2.03	-2.03	flow [W]	-	end x2)	-2.17	-2.54	flow of the second seco	at 5 K (thermal strap end x2)	N/	A/	-2.27	no use
flow [W]	a who	at 50 K (thermal strap end x2)	or useless	-9.96	-10.1	-10.7	-10.6		for a	end x2)	-11.2	-13.5	for 1	end x2)		0.124W/K On (3g/s) -0.260 -0.542 -0.542 -2.27 -11.4 4.17 338 335 302.3 284.1 29.2 11.0	-11.4	
	for	at 295 K (thermal strap end x4)	-	12.1	11.4	12.8	8.08			at 295 K (thermal strap end x4)	5.26	4.7		at 295 K (thermal strap end x4)			4.17	
		Tmax (K)	295	295	295	295	295	-		Tmax (K)	335	345		Tmax (K)	338	338	335	381
		Tmin ceramic (K)	59	262.8	264.6	273.4	276.4			Tmin ceramic (K)	281.1			Tmin ceramic (K)	302.3	302.3	284.1	284.5
		Tmin ceramic (°C)	-214	-10	-8.6	0.3	3.2			Tmin ceramic (°C)	8.0			Tmin ceramic (°C)	29.2	29.2	11.0	11.3
		Tmax ceramic (K)		262.8	264.8	273.5	280.2			Tmax ceramic (K)	286.8			Tmax ceramic (K)	304.9	304.9	290.8	291.3
		Tmax ceramic (*C)		-10	-8.3	0.4	7.1			Tmax ceramic (°C)	13.7			Tmax ceramic (°C)	31.7	31.7	17.6	18.1
+	-							•				1						

No RF Power (static case)

With RF (nominal)

With RF (full reflection)

‡ Fermilab

Conclusion, fulfillment of requirements

Electromagnetic parameter	Value	Y/N
Frequency, MHz	325	Y
Bandwidth(S ₁₁ <0.1), MHz	> 1	Y
Average nominal operating power, kW (CW, @20% reflection)	11	Y
Design and Acceptance Testing power, kW (CW, full reflection, any phase)	12	Y
Loaded Q	5.05E+6 ± 25%	Y
Maximum HV bias, kV	± 5	Y
Ceramic window dielectric loss constant	< 1E-4	Y

Mechanical Parameter	Value	Y/N
Input coaxial line aperture, mm	76.9	Y
Input coaxial line impedance, Ω	50	Y
Output coaxial line aperture, mm	72.9	Y
RF window	Single, RT	Y

Thermal parameter	Value	Y/N
Thermal intercepts (nominal), K	5 and 50	Y
Temperature at 5 K intercept, K	< 15	Y
Temperature at 35-50 K intercept, K	< 80	Y
Maximum 2K heat load, W	< 1.0	Y
Maximum 5K heat load, W	< 3.5	Y
Maximum 35-50K heat load, W	< 15	Y
Maximum ceramic flange temperature, K	< 325	Y
Antenna cooling media	Dry Air	Y
Air flow rate, g/s	< 3	Y
Max cooling air pressure drop, bar	< 1	Y
Air output temperature, K	< 323	Y

Diagnostic		Y/N
Temperature sensors (per each coupler)	see description above	Y
E-probe current monitor	1	Υ
Vacuum pressure gauge in proximity of the ceramic windows	1	Υ
Bias current monitor	1	Y
Bias voltage monitor	1	Y
Air output flow monitor	1	Y

Présentation du projet : PBS

Dressed Single Spoke Resonator (FNAL)

FACULTÉ

D'ORSAY

universitė

PARIS-SACI AV

DES SCIENCES

cnrs

W

Université de Paris

Présentation du projet : WBS

		Pre-Producti	on Phase			
WP1: Management	WP2 : Jacketed Cavity	WP3 : Fundamental Frequency Tuner	WP4 : Jacketed Cavity + FFT	WP5 : Fundamental Power Coupler	₩P6 : Infrastructure	
1.1 Project Management Documentation	2.1 Niobium Material Offsite	3.1FFT Offsite	Cavity + FFT Validation in Vertical Crye	5.1 FPC Offsite	6.1 Cavity Tooling	
1.1.1 Project Management Plan (PMP) 1.1.2 Quality Assurance Plan (QAP)	2.1.1 Final Design & Reviews	3.1.1 Final Design & Reviews	4.1.1 Vertical Test Preparation	5.1.1 Final Design & Reviews	6.1.1 Inspection Cart 6.1.2 BCP Cart	
1.1.3 Risk Management Plan (RMP)	2.1.1.1 Headsaired Design of DCAV	3.1.1.1 Heakaning Design of PPT	4.1.1.1 Assembly of Taury and Cavily as Organial Jaury	5.1.1.1 Headsaired Design of FPC	6.1.3 HPR Cart	
1.1.4 Project Planning Document (PPD)	2.1.1.3 Drawings for Hisbins	3.1.1.2 Desuings for PFT	4.1.1.2 Perparation for scaling & Instrumentation	5.1.1.2 Drawings for PPC	6.1.4 Lifting Tool	
	2.1.1.4 FDR Far DCAV - PRR Far HL	3.4.4.3 FDR 6++ FFT	4.1.1.3 Casting Down of Crysolal	S.1.1.3 FDR-PRR for FPC	6.1.5 Weighing Device	
1.2 Review Activity	2.1.2 Procurement	3.1.2 Procurement	4.1.2 Validation of Cavity	5.1.2 Procurement		
	2.1.2.1 Processor Sensification Decomposation	3.1.3.4 Mechanical Parls	4.1.2.1 Rf Conditionsing of 4.2K & Hypersonnal	5.1.2.1 Proversarial Servicia dina Desenvalution	6.2 Reception Area	
1.2.1 WP2 Review	2.1.2.2 Aneralaser Trai Desseralation	3.1.2.2 Halar Anarakig	4.1.2.2 RF Candiliansing at 2K & Heamersman	5.1.2.2 Aurplaner Teal Danmentation		
1.2.2 VP3 Beview		3.1.2.3 Pires Aslaslar Assessing		5.1.2.5 Administration Dessenvelation & Publication	6.2.1 Dimensional Checking	
1.2.3 WP4 Beview	0.1014 (5.1.2.4 Analysis and Selentins of offers and PO	6.2.2 Visual Inspection too	
1.2.4 WP5 Beview	2.1.3 Manufacturing	0.1014	4.1.3 Validation of FFT		6.2.3 VNA	
1.2.5 WP6 Review	2.1.3.1 QCal JCRY Hansfasterer	3.1.3 Manufacturing	4.1.3.1 Validation of Holes	E to March 1	6.2.4 Alignment checking t	
	2.1.3.2 Reairs of Handfallering Desservalation	3.1.3.1 Henkasisal Parls	4.1.5.2 Validation of Pirms Antonion	5.1.3 Manufacturing	6.2.5 T, H and P measurem	
		5.1.3.2 Halar Assembly		5.1.3.1 Hamfaslering Readiness Resiru		
		5.1.3.3 Pires Aslaslar Assembly	4.1.4 Cryostat Warming up &	5.1.3.2 Handalaring fallourap		
	2.2. Is alwayed Country Official		Disassembly	5.1.3.3 Transportation & Delivery at U/CLab	6.3 Chemical Etching Lab	
	2.2 Jacketed Cavity Offsite		4.1.4.1Warming up In Runn Temperature		0.3 Chemical Etching Lab	
		3.2 FFT @ IJCLab	4.1.4.2 Disassembly of Casily and PPT			
	2.2.1 Final Design & Reviews	J.2 ITT @ IJCLab	4.1.5 Reporting on Vertical	5.2 FPC @ IJCLab	6.3.1 US Bath 6.3.2 Piping & Adaptors	
	2.2.1.1 Heaksains/ Design of JCRV	3.2.1 Site Acceptance Review	Test		6.3.3 BCP Mixture	
	2.2.1.2 Drawings for JCAV	(SAR1)	4.1.5.1 Reporting an Surface Processing of Casily	5.2.1 Site Acceptance Review	6.3.4 Water Cooling System	
	2.2.1.3 FDR Fay JCAY - PRR Fay JCAY	3.2.1.1 Recently	4.1.5.2 Reporting on Casily Test	(SAR1)	6.3.5 Temperature sensors	
		3.2.1.2 Room Temperature Henkanital Chenku	4.1.5.3 Reparting an PPT Teal	5.2.1.1 Anneably		
	2.2.2 Procurement	3.3.1.3 Room Temperature Electrical Chevia		5.2.1.2 Room Temperature Henkanizat and leak Chenka		
		3.2.1.4 Reairs of Handaslaring Dessarelation		5.2.1.3 Room Trapportance RF Chroba	6.4 Clean Boom	
	2.2.2.1 Processoral Specification Decomposation		4.2 Cavity + FFT Shipping	5.2.1.4 Resirus of Hassefastering Dessaratation	o. 4 olean noolii	
	2.2.2.2 Anarplaner Tral Dessaralation	3.2.2 Aging Test of SSR1	in a start y start on pping			
		Cartridge		5.2.2 Cleaning and Assembly	6.4.1 ISO4 area	
T	2.2.3 Manufacturing	1.2.2.1 Perparation of Teal	4.2.1 Preparation for Shipping		6.4.2 HPR Unit	
		3.2.2.2 Cryagrais Tral		5.2.2.1 Proparation for Cleaning	6.4.3 Vacuum Pumps	
	2.2.9.1 Hausfauluring Readiaron Renieu	3.2.2.5 Reporting on Toure Aging	4.2.1.1 Draigs of Transportation Crates	5.2.2.2 Cleaning & Annemalig & Dagging of Cold End	6.4.4 Leak Detector	

Fichier complet accessible sur ATRIUM : <u>ATRIUM-390229</u>

FACULTÉ
 DES SCIENCES
 PARIS-SACLAY
 DIOSCIENCES

cnrs

Université de Paris