Theory and phenomenology of radiative energy loss processes in nuclear collisions

François Arleo

LLR Palaiseau

Atelier Physique théorique des deux infinis June 2021

Context

Hard QCD processes in pA collisions allow for probing nuclear effects:

• nuclear Parton Distribution Functions (nPDF)

- ▶ PDF modified in nuclei $f_i^A(x, Q^2) \neq A f_i^p(x, Q^2)$
- nPDF extracted from data global fits, assuming collinear QCD factorization in pA collisions to be valid for all observables
 - cf. Ingo Schienbein, Mon 7, 11:40

- Energy loss processes
 - Multiple scattering in nuclei induce radiation, leading to energy loss
 - Affects hadron production in pA collisions at all energies
 - Effect beyond collinear factorization

How to study separately both effects?

Fully Coherent Energy Loss (FCEL)

Energy loss in nuclear matter revisited: fully coherent regime

[FA Kolevatov Munier Peigné Rustamova Sami 2010-2020]

- New regime predicted from first principles in QCD
 - Better understanding of in-medium QCD radiation
- FCEL affects the production of all hadron species in pA collisions
- Important consequences for the phenomenology of pA collisions
 - quarkonia, light hadrons, open-heavy flavour hadrons...and even neutrinos from hadron decays in cosmic ray air showers
- FCEL spoils a clean extraction of nuclear parton densities
 - consequences on the prediction of hard processes in heavy-ion collisions

Some highlights (1/2)

• Rigorous calculation of the medium-induced gluon spectrum for a generic ab \rightarrow (cd)_R hard process

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega}\Big|_{\mathrm{ab}\to(\mathrm{cd})_{\mathrm{R}}} = \left(C_{\mathrm{a}} + C_{\mathrm{R}} - C_{\mathrm{b}}\right) \frac{\alpha_{\mathrm{s}}}{\pi} \left[\ln\left(1 + \frac{\hat{q}L}{M_{\xi}^{2}}\frac{E^{2}}{\omega^{2}}\right) - \mathrm{pp}\right]$$

- Derived in the opacity expansion and saturation formalisms
- Leads to energy loss proportional to parton energy E

$$\Delta E_{
m fcel} \propto lpha_s \; rac{\sqrt{\hat{q}L}}{M_\xi} \; E \quad (\gg \Delta E_{
m lpm})$$

Depends on the global color charge of the final state R

Some highlights (2/2)

- Successful phenomenology of hadron production in pA collisions
 - Solves mystery of quarkonium suppression observed at all energies
 - Extension to light and open heavy-flavour hadron production
- Suggesting Drell-Yan as a golden process to disentangle nPDF/FCEL

- F. Arleo, G. Jackson, R. Kolevatov, S. Munier, S. Peigné,
 M. Rustamova, T. Sami, K. Watanabe [red = student/postdoc]
- Strong links with experimental groups: CMS (LLR), LHCb (LLR), ALICE (Subatech)
- Exchanges with nPDF groups: nCTEQ15 (e.g. J.-P. Lansberg, I. Schienbein, H.-S. Shao in France), EPPS16 (Finland/Spain)
 - > preliminary discussions on feasibility with I. Schienbein

• nPDF global fits including FCEL

- Crucial need for reliable extraction of parton densities
- Interesting theoretical, phenomenological and numerical aspects
- Explore FCEL effects on cosmic ray air showers
 - Preliminary results on FCEL effects on prompt and conventional neutrino flux to be compared with IceCube upper limits
- Collaboration with S. Peigné and K. Watanabe (Subatech) and G. Jackson (INT Seattle)