Particle dark matter candidates and the axion case

Jérémie Quevillon

LPSC, Grenoble

7 Janvier 2021

Dark Matter Neutrino Portal

Asmaa Abada

(see also this morning talk)

Perspectives:

Sterile neutrinos can be suitable dark matter candidates. The **freeze-in** mechanism with KeV mass dark matter candidate is **to be revisited** by taking into account **flavour effects**.

Compositeness from colliders to space

Particles have substructures: more fundamental degrees of freedom

(see also this morning talk)

glued together by new strong interactions

This can be applied to:

- The Higgs boson and the electroweak scale
- Dark Matter
- An axion-like particle
- Inflation, ...

G.Cacciapaglia, A.Deandrea, B.Fuks

(mesonic state)

Compositeness from colliders to space

G.Cacciapaglia, A.Deandrea, B.Fuks

Perspectives :

- Early universe phase transitions generate gravitational waves (LISA, Einstein tel., ...)
- Leptogenesis and Dark-matter-genesis can be studies in suitable UV completions
- Non-standard cosmological phases (symmetry nonrestoration, phase transitions)
- Light states (ALPs) relevant for star evolution models (ex. XENON1T anomaly)

Axion Dark Matter

Projet IN2P3:

Axions : from particle physics to cosmology S. Davidson, K. Martineau, J. Q, C. Smith

The strong CP puzzle in particle physics

The strong CP problem is really why the combination of QCD and EW parameters make up should be so small...

The Peccei-Quinn axion solution

<u>axial anomaly:</u> $\theta_{EW}^{CPV} \longleftrightarrow \theta_{OCD}^{CPV}$

Solution to the strong CP problem of QCD: add fields such that rotate θ to the phase of a complex SM-singlet scalar who gets a VEV and dynamically drives $\theta \to 0$ Peccei & Quinn

$$\mathcal{L}_{QCD} = \bar{q}(i\gamma^{\mu}D_{\mu} - m_{q}e^{i\theta_{EW}})q - \frac{1}{4}G^{\mu\nu}_{a}G^{a}_{\mu\nu} - \theta_{QCD}\frac{\alpha_{s}}{8\pi}G^{\mu\nu}_{a}\tilde{G}^{a}_{\mu\nu}$$

1. Introduce a new global anomalous axial $U(1)_{PQ}$ symmetry S.B. at high scale cf. global vector

 \rightarrow the low-energy theory has a **Goldstone boson** (the axion field)

2. Design \mathcal{L}_{axion} such that $Q(q_L) \neq Q(q_R) \longrightarrow \operatorname{thi}_{\mathcal{L}_{axion}} (Q_L) = \mathcal{L}_{QCD} + \frac{a}{v} G_{\mu\nu} \tilde{G}^{\mu\nu} + \cdots + \frac{a}{1 \operatorname{GeV} < T < f_a} (PO \operatorname{symmetry breaking}) = \mathcal{L}_{axion} = \mathcal{L}_{QCD} + \frac{a}{v} G_{\mu\nu} \tilde{G}^{\mu\nu} + \cdots + \frac{a}{1 \operatorname{GeV} < T < f_a} (PO \operatorname{symmetry breaking}) = \mathcal{L}_{axion} = \mathcal{L}_{axion} = \mathcal{L}_{QCD} + \frac{a}{v} G_{\mu\nu} \tilde{G}^{\mu\nu} + \cdots + \frac{a}$

3. Non-perturbative QCD effects induce:

$$\mathcal{L}_{axion} = \mathcal{L}_{ChPT}(\partial_{\mu}a, \pi, \eta, \eta', ...) + V_{eff}(\bar{\theta} + \frac{a}{v}, \pi, \eta, ...)$$

U(1)RC

 $\mathcal{L}_{axion} = \mathcal{L}_{ChPT}(\partial_{\mu}a, \pi, \eta, \eta', ...) + V_{eff}(\bar{\theta} + \frac{a}{v}, \pi, \eta, ...) \underbrace{ \int_{-\pi}^{\pi} \int_{0}^{\pi} \int_{\pi}^{\theta(z)} }_{\text{Measured today}} \\ \sim -\Lambda_{QCD}^{4} \cos(\bar{\theta} + \frac{a}{v}) \\ \text{minimum of the potential:} \quad \bar{\theta} + \frac{\langle a \rangle}{v} = 0 \quad \text{CP-violating term cancels!} \\ \text{CP concerts in it.}$ CP symmetry is dynamically restored! new energy scale!

A shift of paradigm

Supersymmetry: -enlarges Poincaré algebra (new energy scale)
 -needs many new particles
 -can preserve SM gauge group

'Peccei-Quinn' theory: -enforces CP-symmetry
 -needs a new global 'no symmetry'
 (anomalous+spontaneously broken)

(new energy scale)

-entangled with SM gauge group : (careful!)

 $[SU(3)_c \otimes SU(2)_L \otimes U(1)_{\mathbf{Y}}]_{local} \times [U(1)_{\mathcal{B},\mathcal{L},\mathbf{P}Q}]_{global}$

the axion: Goldstone bosons combination $\perp Z_L$

Axion couplings

Crucial role played by inflation...

Dark matter from vacuum realignment

Other axion production in non-standard cosmological histories to explore

11

oscillations

Initial conditions and inflation

Crucial question: did SSB occur before or after inflation?

- isocurvature fluctuation from large quantum fluctuations (strong CMB bounds)
- $\Omega_{\rm c}$ h²=0.12 \rightarrow 50 $\lesssim \frac{m_a}{\mu {\rm eV}} \lesssim 200$ DM relic density, narrow mass window:

and of inflatio

PQ symmetr breaking

OCD phas

after QCD phase transition

Landscape

Axions should be very light and feebly interacting

 (\star) for $N_{DW} > 1$, predictions spoiled by topological defects

Axion DM constraints from **laboratory** experiments, from **stars** and **cosmos** observations

Fundamental detection strategy: macroscopic coherence leads to coherent enhancement

Axion conversion to photon

Axion haloscope

Amplify resonantly the EM field in a resonant cavity

Axion limits

From theoretical topological defects to cosmological astrophysical objects

Detecting axion transient with nEDM

in collaboration with G. Pignol et K. Martineau (LPSC)

Axion cosmic strings

Axion miniclusters

Temperature

...Inflation occurred already

 $+ T \sim f_a$ SSB of PQ

$$-T \sim \Lambda_{QCD} \quad m_a \neq 0$$

-
$$T_{\text{OSC}}$$
 $H(T_{\text{OSC}}) \sim m_a$:
 $\downarrow^{1/H}$
 θ_1 θ_2 θ_3 θ_4
 ρ_1 ρ_2 ρ_3 ρ_4

- density perturbations grow under gravity as usual
- collapsing into gravitationally bound objects known as **miniclusters**
- total axion mass contained within the horizon at $t_{
 m osc}$ sets the characteristic minicluster mass at z_{eq} : M_{\odot}

$$M_0 \sim 10^{-12}$$
, size $\sim 10^7$ km 10^{25}

Hogan & Reese (1988) $M_0 = \frac{\sqrt[3]{6}}{\bar{\rho}_a} \frac{4}{3} \pi \left(\frac{\pi}{a(T_0)H(T_0)}\right)^3$ Smaller than smallest WIMP structures (~10⁻⁶M_o) $M_0 = \frac{10^{-7} \text{ km}}{10^{-2} \text{ size}} = 10^{-7} \text{ km}$ where $M_0 = 10^{-7} \text{ km}$ with the Galaxy through the Earth every $\sim 10^5$ years

Implications of alternative cosmological scenarios on axion MC, needed

Detecting axion miniclusters with gravitational microlensing

Huge and renewed global effort in axion direct detection. If f_{MC} is high, rare MC encounters \rightarrow axion DM detection is limited.

22

How do photons propagate through axion background?

Conclusions

- Axions are multidisciplinary: a chance/challenge
- Axion physics is a mature field but new fundamental properties are expected
- Deeper connexions between the strong CP problem, the DM matter and the particle flavour sector should be explored (neutrinos, baryogenesis, etc.)
- This is the perfect time to be studying axion DM detection. New experiments, new experimental ideas & technics along with alternative DM scenarios
- Axion topological defects are theo/astro objects that one needs to deal with
- Axion Miniclusters are a fairly generic, but largely overlooked, aspect of axion DM phenomenology. What fraction of the axion dark matter ends up in miniclusters?
- Optical effects should be examined further in specific axion backgrounds
- Investigate precision terrestrial experiments to probe axion backgrounds