Alexandre Marcowith — Journée Théorie IN2P3 2021 —

Theory of cosmic ray acceleration and transport status and perspectives

Scientific context More than 100 years after the discovery the origin is still not known

Particle physics started with Cosmic Ray studies until 50's (discovery of air showers, P. Auger 1938), > discovery of positrons, muons ...

V. HESS and next contributors : CR come from space, not only of solar origin (H. Alfvèn's guess)

References:

https://www.refletsdelaphysique.fr/articles/refdp/pdf/2013/01/refdp201332p8.pdf

laboratoire de la JungFraujoch (3 500 m)

The three Cosmic Ray spectra Energy spectrum / Composition spectrum / Angular spectrum

From MeV to almost ZeV or 10²¹ eV

Cosmic Ray sources Galactic sources : energies : MeV-100 PeV

• Most favorite : Remnants of Supernova but other could contribute : massive star clusters, pulsars (for leptons), the central galactic black hole (Sagittarus A*)…

-
- power injected by Supernovae in the
- Energetically feasible —

 $[V_G$ galactic disk volume, T_{res} CR galaxy residence time, Θ CR CR energy density]

Main energetic argument : Pressure into CRs :
$$
P_{CR} = \frac{e_{CR}V_G}{T_{res}} \sim 10^{41} \text{erg/s} \sim 10\%
$$

power injected by Supremevae in the Galaxy (for 3 SNe/century)

• Observations do show particle acceleration is on-going.

Evidences of acceleration phenomenon

Supernova remnants : non-thermal spectrum from radio to gamma-rays + X-ray filaments

Gamma-ray spectra of several historical supernovae

Non-thermal (power-law) photon distribution + require relativistic particles (kinetic energies above GeV to TeV)

Tycho SNR image at X-rays by the Chandra satellite

Blue: thin rims associated with the forward shock : non-thermal synchrotron radiation by TeV electrons in up to milli Gauss level magnetic fields.

Evidence of strong magnetic field amplification by on-going plasma processes (eg Parizot et al 2006 A&A)

Cosmic Ray sources Galactic sources : energies : MeV-100 PeV

- Most favorite : Remnants of Supernova but other could contribute : massive star clusters, pulsars (for leptons), central galactic black hole …
- Main energetic argument : $P_{\rm CR} = \frac{C_{\rm IC} C}{T_{\rm max}} \sim 10^{41} {\rm erg/s}$ ~ 10% power injected by Supernovae in the Galaxy (for 3 SNe/century) — Energetically feasible — $P_{CR} =$ $\epsilon_{\rm CR} V$ G *T*res $\sim 10^{41}$ erg/s
- Observations do show particle acceleration is on-going.

Several big issues :

1) Fine … but one major difficulty is to link what we observe at sources and what we measure on Earth

(see the transport problem)

- 2) We do not know yet how exactly CR escape from their sources.
- 3) Calculating CR distribution at sources is a very complex task because of high degrees of non-linearity.

(3) Non-linear plasma physics at sources Particle acceleration at fast, strong shocks

Main mechanism: diffusive shock acceleration but in fact challenging : multi-scale physics of a complex system

> CR back-reaction and self-generated turbulence : up to 8-9 orders of magnitude in scales to cover : indeed Particles are injected from the shocked plasma downstream (MeV) and have to be accelerated up to PeV energies

Shock profile including CRs back-reaction in fluid Eqs (eg Drury et al 1981) Principle of diffusive shock acceleration (DSA, eg Bell 1978 MNRAS)

CR scattering back and forth the shock front with a compression ratio r by magnetic perturbations naturally produces power-law distributions N(E) scaling as E-(r+2/r-1)

The compression ratio depends on the particle energy, non universal power-law anymore

Non-linear plasma physics Strong developments of numerical studies

- Challenging : multi-scale physics of a complex system
- > CR back-reaction and self-generated turbulence : up to 8-9 orders of magnitude in scales to cover.
- > Different tools : Particle-in-cell (small scales, injection), hybrid methods and kineticmagnetohydrodynamics (largest scales), semi-analytical solutions of 1D Fokker-Planck equation

Distribution function = sum of individual (macro) particles

(2) Escape from sources Still the effect of CR self-generated turbulence

When relaxed from the accelerator still CR have some over density/pressure and carry some current => trigger a series of plasma instabilities (still widely unexplored). Actually very complex : intrinsically 3D, time-dependent, non-linear. 3554 *L. Nava et al.*

> <u>One (popular) case</u> : CR resonant streaming instability (Nava et al 2016 MNRAS): Solve non-linear kinetic Eqs (Fokker-Planck like as for Markov processes) CR Pressure P_{CR} + Alfvén waves intensity I(k). **k like as for Markov processes) CR Pressure P_{CR} + Alfven waves i** \mathbf{y} $\mathbf{I}(\mathbf{K})$.

N.B. : The resonant character is k =1/r_g , r_g is the CR gyro radius r_g = (E/ZeB), E= kinetic energy, Ze charge, B total magnetic field strength

d CR diffusion D ∂ ∶∽
∂ *.* (6) Wave damping $\Gamma_{\rm d}$ It depends on the interstellar (galactic) medium properties (temperature, fraction of neutrals …)

tio: $\frac{1}{2}$ າe tván sr ∂*z* Advection at the Alfvén speed Va

Non-linear coupled Eqs
\n
$$
\frac{\partial P_{CR}}{\partial t} + V_A \frac{\partial P_{CR}}{\partial z} = \frac{\partial}{\partial z} \left(\frac{D_B}{I} \frac{\partial P_{CR}}{\partial z} \right),
$$
\n
$$
\frac{\partial I}{\partial t} + V_A \frac{\partial I}{\partial z} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\partial t} = -V_A \frac{\partial P_{CR}}{\partial z} - 2\Gamma_d I + Q,
$$
\n
$$
\frac{\partial I}{\
$$

(1) Cosmic Ray transport: microphysics From sources to Earth : the journey through interstellar medium

• Most standard way : the quasi-linear theory (first order (Born) approximation) : solve transport (Fokker-Planck like) Eqs. (see back-up slide 1)

A. The particle trajectory is the unperturbed one (Larmor motion)

- B. The amplitude of the fluctuations is low
- C. Perturbations exist at all scales (fully-developed turbulence)
- > But QLT again is not valid *at* sources and *around* sources (to which spatial and time extend ?) : requires numerical simulations (PIC - MHD ...).
- Not even sure it is valid in the mean interstellar medium: the turbulence properties are strongly space and time-dependent (intermittency phenomenon, its effect barely addressed: Shukurov et al 2017).
-
-

(1) Cosmic Ray transport: phenomenology Based on Quasi-linear theory

• Diffusion is almost parallel to the mean magnetic field

> But difficult to explain the full spectral properties: hardening around 200 GeV, too large anisotropy, gamma-ray gradient problem, low energy fit … need for more refined theory, interstellar medium models …

observations (spectra, anisotropy).

Diffusion coefficient
$$
D(E) = D_0 \left(\frac{E}{E_0} \right)^a
$$
, D_0 , E_0 , a adjusted by

Typically $D_0=10^{28} {\rm cm}^2/{\rm s}\,$, ${\rm E}_0=4 {\rm GeV}\,$, ${\rm a}=1/3$

French theory teams

+ Important support by INP

+ Teams involved in cosmo-chemistry like IMPMC @ MHNN, CEREGE …(see back up slide 2)

+ Teams in space plasma physics like LATMOS …

Cosmic Ray physics Prospects + organisation

- What do we need:
	- Effort on a better understanding of the microphysics (analytical/numerical)
- Better organisation of the french community
	- INTERCOS project : IN2P3 funded project 2021-2023.
	- Links with laboratory experiments laser physics, irradiation experiments ...

Back-up

(1) Cosmic Ray transport: microphysics (ba1) From sources to Earth : the journey through interstellar medium

- Two main effects (in sources diffusion is more isotropic) (see A. Shalchi 2009 ASSL)
	- Diffusion parallel to the mean magnetic field: pitch-angle random walk (parallel Lorentz force component, B mean along z here, v particle speed)

Diffusion perpendicular to the mean magnetic field: magnetic field line wandering. *vx* = *v*[∥] δB _x *B*

Example for the perpendicular diffusion coefficient: $D_{\perp}(t) = \frac{1}{2\pi} \sum_{j=1}^{N-1} d t \langle v_x(t) v_x(0) \rangle$ involves

 ${\rm terms\ like}\ \langle v_\parallel(t)\delta B_{\rm x}(t)v_\parallel(0)\delta B_{\rm x}(0)\rangle,$ time correlations of order 4.

• The problem is that: in order to reach a particular x at a time t, the pathway depends on the turbulence crossed along it, so the above integro-differential equation can not be straightforwardly solved.

$$
\frac{v_{\parallel}}{v} = \cos(\alpha) = \frac{\Omega}{v} \left(v_x \frac{\delta B_y}{B} - v_y \frac{\delta B_x}{B} \right), \Omega = v/r_g
$$

$$
=\frac{\langle \Delta x^2 \rangle}{2t} = \int_0^\infty dt \langle v_x(t) v_x(0) \text{ involves}
$$

Cosmic Rays and star formation dynamics (ba2) A new emerging theme

- Low energy Cosmic Rays: keV-MeV leptons + MeV-GeV hadrons (protons).
- > Matter ionization where photons can not penetrate (matter-magnetic fields coupling)
- > Source of heat.
- > Spallation, radioactive elements production, impact over dust.
- > Initiate complex prebiotic chemistry in proto-planetary medium.
- > GeV CR proton pressure gradients drive winds at galactic scales.
- > CR pressure effects contribute to galactic (and circum-galactic ?) magnetic dynamo.

