

Prospectives nationales 2020–2030 : Atelier "Physique Théorique des deux infinis"

Theoretical Modeling of the Neutron Star Crust

Marco Antonelli $^{1\rightarrow 2}$, Anthea Fantina 3 , Marcella Grasso 4 , Francesca Gulminelli 2 , Elias Khan⁴, Jérôme Margueron⁵, Micaela Oertel⁶, <u>Michael Urban</u>⁴

¹CAMK (Warsaw), ²LPC Caen, ³GANIL (Caen), ⁴IJCLab (Orsay), ⁵IP2I (Lyon), ⁶LUTH (Meudon)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 000

Outline

- 1. Neutron stars
- 2. Why are we studying the crust?
- 3. Uniform matter at low density

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- 4. Crust composition
- 5. Glitches
- 6. Crust breaking
- 7. Conclusion

Neutron stars

- \triangleright Compact objects (\sim 2000 are known in our galaxy) produced in core-collapse supernovae at the end of the life of intermediate-mass stars
- ► Mass $M \sim 1 2M_{\odot} = 2 4 \times 10^{30}$ kg in a radius of $R \sim 10$ km: density $\rho >$ nuclear saturation density $\rho_0 = 2.7 \times 10^{14}$ g/cm 3 , $n_0 = 0.16$ fm $^{-3}$
- \triangleright Typical rotation periods range from few s to few ms
- ► strong magnetic field B: typically $\sim 10^{12}$ G, magnetars: $B_{\text{surf}} \sim 10^{14} - 10^{15}$ G
- \triangleright B not aligned with the rotation axis leads to periodic e.m. emission (pulsar) and slows down the rotation

 \triangleright A neutron star has a complex inner structure:

outer crust: Coulomb lattice of neutron rich nuclei in a degenerate electron gas

inner crust: unbound neutrons form a neutron gas between the nuclei (clusters)

outer core: homogeneous matter (n, p, e^-)

inner core: hyperons? quark matter? Why are we studying the crust? (1) Effect on astrophysical observables

- \blacktriangleright Crust composition \leftrightarrow equation of state for $n \lesssim 0.08$ fm⁻³ $\leftrightarrow M(R)$ relation
- \blacktriangleright Heat transport through the crust ← observed surface temperatures and the Astrophysical Astrophysical Astrophysical Astrophysical April 2017 April 2017 April 2017 April 2019 Apri
- \blacktriangleright Nuclei in the crust form a Coulomb crystal \leftrightarrow elasticity, cracks, crustquakes therein). One of the uncertain aspects of the pairing gap is
- > Unbound neutrons in the inner crust are superfluid ← glitches, cooling, oscillation modes

(2) Crust as nuclear physics laboratory

- **Energy-density functional at low density and large** asymmetry relaxation models (e.g., Lyubarsky et al. 2002; Pons &
- \blacktriangleright Study of pairing and superfluidity decay can span a large range of luminosity, and because
- Testing ground for many-body theories (ab-initio calculations, links with ultracold atoms)

 i mburity scattlering. The im[purit](#page-4-0)y p[arame](#page-12-0)ter i

Equation of state of uniform matter at low density (1)

- Inner crust: large regions of very dilute neutron matter (between the clusters)
- Low densities most suitable for ab-initio descriptions (e.g. with chiral interactions)
- Composition of the inner crust is approximately determined by the EOS of uniform matter (liquid-gas phase coexistence)

[Martin and Urban, PRC (2015)]

E LIZER KENNED K

 000

Uniform matter is the first step in constructing an energy-density functional

Equation of state of uniform matter at low density (2)

- Example: YGLO functional reproduces both the low-density EOS known from $k_F a$ expansion and phenomenological EOS around saturation
- Drastic change of the region of the spinodal instability, especially at low density

0.4 0.6 E_{NM}/E_{FG}
e.

1.0

 a (fm 3) 0.005

イロト イ押ト イヨト イヨト

 $-SLv5$ YGLO (FP 0.046

D. AEDMC FP \bullet Akmal

0.135

[Yang, Grasso, Lacroix, PRC 94 (2016)]

 2990

Important effect on neutron-drip density and inner-crust composition expected!

Pairing in uniform neutron matter

- \triangleright Superfluidity of the neutron gas in the inner crust is responsible for glitches
- \triangleright The pairing gap Δ affects also cooling: suppression of the specific heat, new neutrino-emission mechanism (pair breaking and formation)
- \blacktriangleright Dilute neutron matter similar to ultracold atoms $(R < 1/k_F < |a_{nn}|)$
- \blacktriangleright Medium polarization (screening) effects reduce the gap compared to BCS theory
- \triangleright Density where the gap tends to zero is strongly model dependent
- Δb -initio calculations needed!

Composition of the crust

- \triangleright Crust is not made of uniform matter but a crystal of nuclei (outer crust) or clusters in a neutron gas (inner crust)
- \triangleright Composition determined by energy minimization: HFB for the outer crust [Pearson,..., Fantina, et al. MNRAS (2018)], usually ETF or similar approximations for the inner crust [Martin and Urban, PRC (2015)]
- \blacktriangleright Problematic to consistently match different EOS for outer crust, inner crust, and core: use unified EOS
- \blacktriangleright Finite crystallization temperature \rightarrow distribution of (N, Z) around the energy minimum \rightarrow prediction for the impurity parameter Q_{imp}
- \triangleright Q_{imp} has important effect on transport properties (electric conductivity, heat conductivity) and may also have impact on the entrainment

 \equiv

 QQ

Glitches

- \triangleright Superfluid neutrons in the inner crust can only rotate by forming quantized vortices
- If vortices are pinned to the nuclei, their number cannot change and the superfluid does not follow the slowdown of the star

 \rightarrow superfluid rotates faster than the rest

- \triangleright When the difference becomes too big, vortices will be unpinned and move outwards
	- \rightarrow superfluid transfers angular momentum
	- \rightarrow sudden spin up = glitch
- \triangleright Some of the unbound neutrons are entrained by the lattice of nuclei

 \rightarrow superfluid density in the crust is reduced

Is it still enough to explain Vela's glitch activity (average slope)?

Static constraints from glitches

- The pinning force determines the maximum glitch amplitude
- If pinning force and EOS known \rightarrow constraint on M
- ^I The entrainment determines the maximum glitch activity
- \blacktriangleright Band-structure theory [Chamel] gives strong entrainment that is incompatible with realistic M
- \blacktriangleright Superfluid hydrodynamics predicts much weaker entrainment [Martin and Urban, PRC 94 (2016)]
- Microscopic studies of pinning force and entrainment needed!

Dynamics of glitches

- Permanent monitoring of pulsars will allow for the observation of the dynamics of the glitch
- Why are the time scales in Vela and Crab so different?
- \blacktriangleright Is there a slow-down before the glitch?
- To understand the spin-up and the following post-glitch relaxation, we have to model the hydrodynamic friction which depends on the average vortex motion
- Program: simulation of vortex motion in the crust environment
- Example: repinning of a vortex

Breaking of the crust

- Like every elastic material, the crust will break or deform plastically beyond some maximum strain
- Crust breaking can emit X-ray bursts
- Crustquakes, generate gravitational waves
- Limit on the rotation frequency of spinning-up accreting ms pulsars [Fattoyev et al. (2018)]
- \triangleright Spinning-down pulsars: crustquakes as triggers for glitches? [Akbal and Alpar (2018)]
- Depending on mass, EOS, and adiabatic index, the crust breaks at the equator or at the poles
- \triangleright Role of crust breaking in neutron-star mergers [Pereira, Andersson et al. (2020) claim effect is small]
- Breaking strain very uncertain: depends on defects and polycristalline structure (theoretical estimates of the breaking strain for ordinary materials sometimes wrong by two orders of magnitudes)

Conclusion

- \triangleright The modeling of the crust is crucial for the understanding of many neutron-star observables
- \triangleright Crust physics is extremely rich as it involves many different scales:

microscopic: nuclear energy-density functional, pairing, structure of nuclei/clusters, vortex pinning, . . .

mesoscopic impurities, transport properties, vortex dynamics, entrainment, breaking strain, . . .

macroscopic: $M(R)$ relation, star cooling, oscillations, glitches, crustquakes, . . .

 \triangleright Expertise in mesoscopic and macroscopic physics needed to be able to link neutron-star observations to microphysics

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright French community active in all these directions (only selected topics presented here).