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The starting point: The self-consistent mean field
Variational principle

𝛿𝐸𝜓 = 0 → ℎ𝜑 = 𝜺𝜑
The total energy is calculated from a many product state |Ψ >, either
directly as the expectation value of a Hamiltionian or indirectly as an 
energy density functional constructed from the one-body density matrices 
of such state.

• Energy-optimised single-particle states 𝜑
• Brillouin’s theorem: no coupling between ground state and 1p-1h 

excitations
• Lowest state might be symmetry breaking (deformation, pairing, …)
• Can be used to scan total energy as a function of « collective variables »
• Time-dependent variant can be linearised → RPA
• Starting point for « vertical » and « horizontal » expansions.

F. D6nau et al. / Large amplitude collective motion 335 

la te r  on  ca l l ed  the  loca l  v a c u u m .  I f  one  is s t u d y i n g  s low co l l e c t i ve  m o t i o n ,  the  s ta te  
Iq) is t a k e n  to be  the  e n e r g e t i c a l l y  l owes t  H F B  d e t e r m i n a n t  sa t i s fy ing  

alq) = 0 ,  (4) 

w h e r e  b o t h  the  d e s t r u c t i o n  o p e r a t o r  a = a ( q )  a n d  its v a c u u m  are  de f i ned  loca l ly  
fo r  e a c h  p o i n t  (q) .  T h e  a b o v e  p r o c e d u r e  m e a n s  an  a d i a b a t i c  p r e p a r a t i o n  o f  a 
s e q u e n c e  o f  s tates* l a b e l e d  by  q, q ' ,  q",  • • • .  In this  a d i a b a t i c  r eg ime ,  c o n s i d e r  t hen  
a ser ies  o f  level  c ross ings  as s h o w n  in fig. 1. H e r e  the  loca l  v a c u u m  Iq) fo l lows  
m e r e l y  the  e n v e l o p e  o f  t he  ene rgy  o f  p u r e  c o n f i g u r a t i o n s  (see fig. 1) in s t ead  o f  
c o n t i n u i n g  in the  p r e v i o u s  c o n f i g u r a t i o n  w h i c h  inc reases  in ene rgy** .  A c c o r d i n g  to 

CAL 
ICUA 

Fig. 1. Schematic plot of the energy versus the collective variable. The dark envelopes show the positions 
of the local vacua. The domain of the collective variable is defined by q,m,~, qm,x and the energy cut Em~,~. 

* To simplify the notation, we label the above well-prepared set of determinantal solutions subject 
to the routhian (3) by the symbol q regardless of the fact that q may not always lead to a complete 
classification of the set of states taken into account. 

** It is important to mention that for the formalism given one can prepare also another set of HFB 
states following adiabatic filling regime, and furthermore adiabatic and diabatic sets could even be used 
simultaneously. 

Dönau et al, NPA 496, 333 (1989). 



Ongoing developments in France

• (Towards) symmetry-unrestriced self-consistent mean-field calculations

• Subtracted Second Random Phase Approximation (generalisation of of RPA in a vertical expansion)
• Multi-particle-multi-hole approach (configuration mixing in a vertical expansion optimising the reference)

• Symmetry-restored Generator Coordinate Method (configuration mixing in a horizontal expansion)

Related topics not covered here:

• Need for generalised (effective) interactions (talk by Marcella Grasso)
• Need for improved and/or specific fit protocols (talk by Marcella Grasso)

• Improved explicit time evolution (talk by David Regnier)

Describing complex nuclear phénomena starting with simple states



Symmetry-unrestricted self-consistent mean fields for complex and exotic configurations of nuclei

Physics cases:

• Exotic shapes dominated by high multipoles
• Fission paths
• Relative orientation of the collective angular

momentum, angular momenta of single-particle
states and the shape

Codes are more difficult to set up and run:

• Often multi-constrainted calculations needed
• Additional constraints needed to fix center of mass and 

relative orientations
• Often soft directions in the energy surface

Nuclear Tetrahedral Symmetry: Td -Group

Let us recall one of the magic forms introduced long time by Plato.
The implied symmetry leads to the tetrahedral group denoted Td !

A tetrahedron has four equal walls.
Its shape is invariant with respect to
24 symmetry elements. Tetrahedron
is not invariant with respect to the
inversion. Of course nuclei cannot be
represented by a sharp-edge pyramid

... but rather in a form of a regular spherical harmonic expansion:

R(#,') = R0 {1 + ↵3+2(Y3+2 + Y3�2)| {z }
one parameter 3rd order

+↵72
⇥
(Y7+2 + Y7�2) �

q
11
13 (Y7+6 + Y7�6)

⇤

| {z }
one parameter 7th order

}

+ higher order odd�� terms

Jerzy DUDEK, UdS/IPHC CNRS and UMCS Evidence for Octahedral & Tetrahedral Symmetries

Introducing Nuclear Octahedral Symmetry

Let us recall one of the magic forms introduced long time by Plato.
The implied symmetry leads to the octahedral group denoted Oh

An octahedron has 8 equal walls. Its
shape is invariant with respect to 48
symmetry elements that include in-
version. However, the nuclear surface
cannot be represented in the form of
a diamond ! ! ! ! ! ! ! !

... but rather in a form of a regular spherical harmonic expansion:

R(#,') = R0
�
11+↵40

⇥
Y40 +

q
5
14 (Y4+4 + Y4�4)

⇤

| {z }
one parameter 4th order

+↵60
⇥
Y60 �

q
7
2 (Y6+4 + Y6�4)

⇤

| {z }
one parameter 6th order

 

Jerzy DUDEK, UdS/IPHC CNRS and UMCS Evidence for Octahedral & Tetrahedral Symmetries
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THE SSRPA MODEL                         M. Grasso in collaboration with D. Gambacurta (LNS, Catania) 
What we want to describe: excitation spectra in a many-body system. 
Important experimental program in France and all over the world for measuring charge-conserving and 
charge-exchange excitations in nuclei

Mean-field : only individual
degrees of freedom

Adding fluctuations to the self-energy generated by particle-
hole bubbles (random-phase approximation)

… but not enough to describe widths and strength fragmentation of collective modes.
NEED TO GO BEYOND!!!

Heavy numerical problem, unaffordable up to one 
decade ago (strong cuts and approximations were done)

How: subtracted second random-phase approximation  
(SSRPA)-> two particle-two hole (2p2h) configurations 
included in the excitation operators. 

The self-energy becomes energy dependent and incorporates
beyond-mean-field effects (individual degrees of freedom
couples with 2p2h configurations). Subtraction procedure for 
handling double-counted correlations

-> state-of-the-art model for predicting excitation spectra



Centroids of Isoscalar GQRs
from 30Si to 208Pb 

Vasseur, Gambacurta, Grasso, PRC 98, 044313 (2018)

Globally: better agreement with the experimental data compared to RPA

The mystery of the missing GT strength:  
2p2h configurations have a density that
increases with the excitation energy. 
This pushes an important amount of 
strength to high energy
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Impact: some recent work

u Electric dipole polarizability in 48Ca, 
Gambacurta, Grasso, Vasseur, Phys Lett. B 777, 163 (2018)

u Systematic study of axial compression modes, 
Vasseur, Gambacurta, Grasso, Phys Rev C 98, 044313 (2018)

u Beyond-mean-field effects on effective masses, 
Grasso, Gambacurta, Vasseur, Phys Rev C 98, 051303(R) (2018)

u Beyond-mean-field effects on the symmertry energy and its
slope from the low-lying dipole response of 68Ni, 
Grasso and Gambacurta, Phys. Rev. C 101, 064314 (2020)

u Gamow-Teller strengths in 48Ca and 78Ni with the charge-
exchange subtracted second random-phase approximation,
Gambacurta, Grasso, Engel, Phys. Rev. Lett. 125, 212501 (2020)

u Soft compression modes and links with the incompressibility
of asymmetric matter, Gambacurta, Grasso, Sorlin, Phys Rev C 100, 014317 (2019)

Beyond-mean-field effects on infinite
matter properties

Well-established interactions with
experimentalists.

Important achievement
- For the community working on 
charge-exchange excitations: starting
now systematic applications 
- Towards the computation of nuclear
matrix elements for neutrinoless
double beta decay (see talk by F. 
Nowacki) 



Multi-particle-multi-hole approach
● Trial wave function : Superposition of Slater determinants

● Advantages : Symmetry preservation (particle numbers, rotational invariance, Pauli principle, ...)

● Applicable to even-even, odd and odd-odd nuclei

● Diagonalization of the Hamiltonian in the N-body space P

=> All types of correlations (static and dynamical ones) :

● Optimization of the orbitals consistently with the N-body correlations in P+Q space

• Building of a generalized mean-field in a N-body space

(equivalent to solving a Dyson equation)

● Interactions : MPMH approach usable with both bare and effective interactions (talk M. Grasso)

Truncated
Hilbert space



Future developments
Formal developments :

- Building of the Hessian matrix : Are there situations in which the variations according to {A} and {φ} are correlated?
- (short range versus long range correlations)
- MPMH renormalized operators (effective operators)
- Input for nuclear reaction models and building of an optical potential (see talk by G. Hupin)

Numerical challenges :

- Going to heavy nuclei
- Porting to HPC in the era of exascale computing
- Efficient truncation schemes / role of meta-modeling and AI 
(see talk by G. Hupin)

Examples of physics cases :

- Low-energy spectroscopy of stable and exotic nuclei
- Evolution of shell closures and their signatures
- Proton-neutron pairing correlations
- Multipolar resonances and electro-weak transitions
- Halos, triton and alpha clustering in light nuclei
(quantum entanglement)

- …  

(mixing in the sd-shell only, Gogny D1S)



Example : Orbital optimization effect on excitation energies

C. Robin, N. Pillet, D. Pena Artega, J.-F. Berger, PRC 93 (2016) 024302.
C. Robin, N. Pillet, M. Dupuis, J. Le Bloas, D. Pena Artega, J.-F. Berger, P¨RC 95 (2017) 044315.



Symmetry-restored Generator Coordinate Method
Toolbox that can be used in many different contexts and that can be embedded into many frameworks:
• MR-EDF (beyond the symmetry-breaking self-consistent mean-field)
• Valence-space Hamiltonians (filter to target specific excitations in shell-model calculations)
• Ab-initio methods of various flavours

Projection (on particle number, angular momentum, parity, isospin, center-of-mass momentum, …)

Refined description of of nuclear structure and reactions:

• Additional correlations not grasped by symmetry breaking
• Restoration of selection rules for electromagnetic, weak, … transitions

Generator Coordinate Method

• Configuration mixing of non-orthogonal states (shapes, angular momenta, intensity of pairing, …)

PROJECTION ON PARTICLE NUMBER AND ANGULAR … PHYSICAL REVIEW C 103, 024315 (2021)

to respect the normalization of |!⟩. These relations imply in
particular that we can always write |!⟩ as a superposition of
basis functions having good symmetry properties.

Then, acting with the projection operator P̂λ
i j on the state

|!⟩ we place ourself in the subspace Sλ of interest:

P̂λ
i j |!⟩ =

n λ∑

ϵ=1

cλ j
ϵ

∣∣$λi
ϵ

〉
. (29)

It is to be noted that, depending on the decomposition (27),
for certain values of λ and j the states P̂λ

i j |!⟩ can be the null
vector. The nonvanishing states P̂λ

i j |!⟩ represent a first step
in our process as (i) they have good symmetry transformation
under the action of Û (g ), i.e., the set of states {P̂λ

i j |!⟩, i ∈
!1, dλ"} transform according to Eq. (2), and (ii) they partially
diagonalize the Hamiltonian:

⟨!| P̂µ
i j

† Ĥ P̂λ
kl |!⟩ = δµλ δik ⟨!| Ĥ P̂λ

jl |!⟩, (30)

⟨!| P̂µ
i j

† P̂λ
kl |!⟩ = δµλ δik ⟨!| P̂λ

jl |!⟩, (31)

where we have used the properties (11) of the projection
operators and also that the projection operators commute with
the Hamiltonian,

∀µ, i, j,
[
Ĥ , P̂µ

i j

]
= 0, (32)

as a consequence of relation (19). However, neither the Hamil-
tonian matrix Hλ nor the norm matrix Nλ, whose elements are

Hλ
i j ≡ ⟨!| Ĥ P̂λ

i j |!⟩, (33)

Nλ
i j ≡ ⟨!| P̂λ

i j |!⟩, (34)

are automatically diagonal. This is necessarily true only in
the trivial, but important, case where n λ = dλ = 1. This is for
example the case for Abelian groups because they have only
one-dimensional irreps and therefore 0 ! n λ ! dλ = 1.

In the case of non-Abelian groups, in addition to acting
with the projection operator, we also have to concurrently
diagonalize the norm and the Hamiltonian matrix among the
states P̂λ

i j |!⟩. We thus represent the eigenstates of Ĥ as a
superposition of states of the form

∣∣$λi
ϵ

〉
=

dλ∑

j=1

f λ j
ϵ P̂λ

i j |!⟩, (35)

where the weight factors f λ j
ϵ are complex numbers. Injecting

Eq. (35) into Eq. (24), we obtain the generalized eigenvalue
problem (GEP)

Hλ f λ
ϵ = eλ

ϵ Nλ f λ
ϵ , (36)

with f λ
ϵ being a column vector containing the weight factors.

The energies eλ
ϵ are generalized eigenvalues, i.e., the roots of

the characteristic equation

det(Hλ − eNλ) = 0. (37)

The matrix Hλ is Hermitian, whereas the matrix Nλ, being
a Gramiam matrix,6 is positive semidefinite. As a conse-
quence, the GEP defined by Eq. (36) is a Hermitian positive
semidefinite GEP and therefore has a number n λ of finite real
eigenvalues eλ

ϵ equal to the number of nonzero eigenvalues
of Nλ. In particular, for matrices Nλ that are strictly definite
one obtains n λ = dλ finite real eigenvalues eλ

ϵ when solving
Eq. (36). Otherwise it is necessary to diagonalize Nλ first and
to remove all its dλ − n λ zero eigenvalues in an intermediate
step before diagonalizing the Hamiltonian in such a reduced
subspace [15].

Equation (36) is independent of the label i of the state
|$λi

ϵ ⟩, i.e., the same equation holds for all dλ values it can
take. This implies that the energies eλ

ϵ are dλ-fold degenerate,
as expected for the eigenvalues of Ĥ from the discussion in
Sec. II C. With that, Eq. (36) has to be solved only for one state
|$λi

ϵ ⟩ out of each eigenspace. All other symmetry partners of
the basis can then be obtained through the use of the shift
operators

∀ k ∈ !1, dλ",
∣∣$λk

ϵ

〉
= P̂λ

ki

∣∣$λi
ϵ

〉
. (38)

Having solved the GEP of Eq. (36), we have the weights
f λ j
ϵ entering the states |$λi

ϵ ⟩, Eq. (35), and the corresponding
energy eλ

ϵ , Eq. (36), at our disposal. Repeating the process for
each λ that can be found in the symmetry-breaking state |!⟩,
we obtain a set of orthonormal basis functions {|$λi

ϵ ⟩, λ, ϵ ∈
!1, n λ", i ∈ !1, dλ"} of span(G|!⟩) that transform according
to the restored symmetry and diagonalize the Hamiltonian in
this space:

Û (g )
∣∣$λi

ϵ

〉
=

dλ∑

j=1

Dλ
ji(g )

∣∣$λ j
ϵ

〉
, (39a)

〈
$µi

ξ

∣∣$λ j
ϵ

〉
= δµλ δi j δξϵ, (39b)

〈
$µi

ξ

∣∣ Ĥ
∣∣$λ j

ϵ

〉
= δµλ δi j δξϵ eλ

ϵ . (39c)

F. Discussions

Thus formulated (see also [9,18,72]), the projection
method is not simply the extraction of states with good quan-
tum numbers from |!⟩, but the efficient construction of states
diagonalizing Ĥ in the subspace span(G|!⟩), which automat-
ically have good symmetry properties.

Alternatively, the projection method can also be formulated
from a variational point of view [18,74], where the projection
operators emerge naturally from the knowledge of the decom-
position of L2(G) in terms of irreps. From that perspective,
the projection method can also be interpreted as a special case
of the Generator Coordinate Method (GCM) based on the
set made of the degenerate rotated states G|!⟩ ≡ {Û (g )|!⟩,
g ∈ G}, where the group element g provides the generator

6The Gramian matrix Ai j = ⟨vi|v j⟩ is the matrix built from the
scalar products of all pairs of vectors |vi⟩ within a given set, which in
our case is the set {P̂λ

i j |!⟩, j ∈ !1, dλ"}. A Gramian matrix is always
positive semidefinite, with the strictly definite case being realized if
and only if all the vectors in the set are linearly independent.

024315-7
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to respect the normalization of |!⟩. These relations imply in
particular that we can always write |!⟩ as a superposition of
basis functions having good symmetry properties.

Then, acting with the projection operator P̂λ
i j on the state

|!⟩ we place ourself in the subspace Sλ of interest:

P̂λ
i j |!⟩ =

n λ∑

ϵ=1

cλ j
ϵ

∣∣$λi
ϵ

〉
. (29)

It is to be noted that, depending on the decomposition (27),
for certain values of λ and j the states P̂λ

i j |!⟩ can be the null
vector. The nonvanishing states P̂λ

i j |!⟩ represent a first step
in our process as (i) they have good symmetry transformation
under the action of Û (g ), i.e., the set of states {P̂λ

i j |!⟩, i ∈
!1, dλ"} transform according to Eq. (2), and (ii) they partially
diagonalize the Hamiltonian:

⟨!| P̂µ
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† Ĥ P̂λ
kl |!⟩ = δµλ δik ⟨!| Ĥ P̂λ

jl |!⟩, (30)

⟨!| P̂µ
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† P̂λ
kl |!⟩ = δµλ δik ⟨!| P̂λ

jl |!⟩, (31)

where we have used the properties (11) of the projection
operators and also that the projection operators commute with
the Hamiltonian,

∀µ, i, j,
[
Ĥ , P̂µ

i j

]
= 0, (32)

as a consequence of relation (19). However, neither the Hamil-
tonian matrix Hλ nor the norm matrix Nλ, whose elements are

Hλ
i j ≡ ⟨!| Ĥ P̂λ

i j |!⟩, (33)

Nλ
i j ≡ ⟨!| P̂λ

i j |!⟩, (34)

are automatically diagonal. This is necessarily true only in
the trivial, but important, case where n λ = dλ = 1. This is for
example the case for Abelian groups because they have only
one-dimensional irreps and therefore 0 ! n λ ! dλ = 1.

In the case of non-Abelian groups, in addition to acting
with the projection operator, we also have to concurrently
diagonalize the norm and the Hamiltonian matrix among the
states P̂λ

i j |!⟩. We thus represent the eigenstates of Ĥ as a
superposition of states of the form

∣∣$λi
ϵ

〉
=

dλ∑

j=1

f λ j
ϵ P̂λ

i j |!⟩, (35)

where the weight factors f λ j
ϵ are complex numbers. Injecting

Eq. (35) into Eq. (24), we obtain the generalized eigenvalue
problem (GEP)

Hλ f λ
ϵ = eλ

ϵ Nλ f λ
ϵ , (36)

with f λ
ϵ being a column vector containing the weight factors.

The energies eλ
ϵ are generalized eigenvalues, i.e., the roots of

the characteristic equation

det(Hλ − eNλ) = 0. (37)

The matrix Hλ is Hermitian, whereas the matrix Nλ, being
a Gramiam matrix,6 is positive semidefinite. As a conse-
quence, the GEP defined by Eq. (36) is a Hermitian positive
semidefinite GEP and therefore has a number n λ of finite real
eigenvalues eλ

ϵ equal to the number of nonzero eigenvalues
of Nλ. In particular, for matrices Nλ that are strictly definite
one obtains n λ = dλ finite real eigenvalues eλ

ϵ when solving
Eq. (36). Otherwise it is necessary to diagonalize Nλ first and
to remove all its dλ − n λ zero eigenvalues in an intermediate
step before diagonalizing the Hamiltonian in such a reduced
subspace [15].

Equation (36) is independent of the label i of the state
|$λi

ϵ ⟩, i.e., the same equation holds for all dλ values it can
take. This implies that the energies eλ

ϵ are dλ-fold degenerate,
as expected for the eigenvalues of Ĥ from the discussion in
Sec. II C. With that, Eq. (36) has to be solved only for one state
|$λi

ϵ ⟩ out of each eigenspace. All other symmetry partners of
the basis can then be obtained through the use of the shift
operators

∀ k ∈ !1, dλ",
∣∣$λk

ϵ

〉
= P̂λ

ki

∣∣$λi
ϵ

〉
. (38)

Having solved the GEP of Eq. (36), we have the weights
f λ j
ϵ entering the states |$λi

ϵ ⟩, Eq. (35), and the corresponding
energy eλ

ϵ , Eq. (36), at our disposal. Repeating the process for
each λ that can be found in the symmetry-breaking state |!⟩,
we obtain a set of orthonormal basis functions {|$λi

ϵ ⟩, λ, ϵ ∈
!1, n λ", i ∈ !1, dλ"} of span(G|!⟩) that transform according
to the restored symmetry and diagonalize the Hamiltonian in
this space:

Û (g )
∣∣$λi

ϵ

〉
=

dλ∑

j=1

Dλ
ji(g )

∣∣$λ j
ϵ

〉
, (39a)

〈
$µi

ξ

∣∣$λ j
ϵ

〉
= δµλ δi j δξϵ, (39b)

〈
$µi

ξ

∣∣ Ĥ
∣∣$λ j

ϵ

〉
= δµλ δi j δξϵ eλ

ϵ . (39c)

F. Discussions

Thus formulated (see also [9,18,72]), the projection
method is not simply the extraction of states with good quan-
tum numbers from |!⟩, but the efficient construction of states
diagonalizing Ĥ in the subspace span(G|!⟩), which automat-
ically have good symmetry properties.

Alternatively, the projection method can also be formulated
from a variational point of view [18,74], where the projection
operators emerge naturally from the knowledge of the decom-
position of L2(G) in terms of irreps. From that perspective,
the projection method can also be interpreted as a special case
of the Generator Coordinate Method (GCM) based on the
set made of the degenerate rotated states G|!⟩ ≡ {Û (g )|!⟩,
g ∈ G}, where the group element g provides the generator

6The Gramian matrix Ai j = ⟨vi|v j⟩ is the matrix built from the
scalar products of all pairs of vectors |vi⟩ within a given set, which in
our case is the set {P̂λ

i j |!⟩, j ∈ !1, dλ"}. A Gramian matrix is always
positive semidefinite, with the strictly definite case being realized if
and only if all the vectors in the set are linearly independent.

024315-7

1

�E = 0 (1)

|��i
E i =

X

q

f�i
q,E | �i(q)i (2)

see B. Bally & M. Bender, PRC103 (2021) 924315
for everything you always wanted to know about 
projection but were afraid to ask.

see M. Bender, N. Schunck, J. P. Ebran, T. Duguet,
Chapter 3 of N. Schunck (ed.) Energy Density Functionals
for Atomic  Nuclei, IOP (2019).
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methods such as Lanczos to extract a few low-lying states
at a much-reduced numerical cost. This might be particularly
useful when addressing large model spaces and/or particle
numbers associated with realistic cases of interest. Second,
the prefactor αnφ associated with the direct integration over
the gauge angle to perform the particle number projection
can be scaled down by performing the latter on the basis of
recurrence relations [69].

Last but not least, there probably is a systematic con-
vergence of the result, as in standard truncated CI calcula-
tions [52], as a function of the maximum unperturbed energy
of the 2qp and 4qp included in the ansatz for a given single-
particle basis size (# here). This means that, given a targeted
accuracy, the dimensionality and the numerical cost might
be significantly scaled down by exploiting this additional
convergence parameter and complementing the calculation by
an appropriately designed formula to extrapolate the results to
the untruncated limit. Such a systematic study has not been
performed within the scope of the present paper but could be
envisioned in the future.

VI. ADDITIONAL OBSERVABLES

To complete our study, the discussion is extended to other
observables.

A. Effective pairing gap

We start with the computation of the effective pairing
gap [70,71]

$eff(g) = g

#∑

k=1

√
⟨a†

ka
†
k̄
ak̄ak⟩ − 1

4
⟨(a†

kak + a
†
k̄
ak̄)⟩2, (20)

which generalizes the BCS gap $(g) and where the expectation
values are to be computed for any ground-state wave function
of interest.

In Fig. 9, the effective gap obtained in the exact case
is compared with that obtained from various approximate
many-body methods of present interest. We observe that
truncated CI calculations based on (non)optimized projected
0qp and 4qp configurations provide results that are below
0.05% (1.5%) error for all coupling strengths g (g > gc) and
are much superior to the other methods shown.

B. One-body entropy

States obtained via the presently proposed method are
strongly entangled in the sense that they correspond to a
complex mixing of independent-particle states. As a matter of
fact, exact solutions are known to be highly correlated states,
resulting into extended diffusion of single-particle occupation
numbers across the Fermi energy. To quantify the deviation of
these many-body states from any independent-particle state,
the single-particle entropy defined as

S

kB

= −2
#∑

k=1

{⟨a†
kak⟩ ln⟨a†

kak⟩ + (1 − ⟨a†
kak⟩) ln(1 − ⟨a†

kak⟩)}

(21)

FIG. 9. Ground-state effective pairing gap [Eq. (20)] as a function
of g for N = 16. Top panel shows exact results (black solid line)
against BCS (purple dashed line), PAV-BCS (red dot-dashed line),
and MBPTN (green filled squares). Lower panel shows exact results
against truncated CI based on nonoptimized (red cross) or optimized
(blue circles) projected 0qp, 2qp, and 4qp configurations.

is computed. Exact results are compared in Fig. 10 with those
obtained from various approximate many-body methods of
present interest. Again, truncated CI calculations based on
(non)optimized projected 0qp and 4qp configurations provide

FIG. 10. Same as Fig. 9 for the one-body entropy.
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FIG. 1. The particle-number projected potential energy surfaces of
Ca48 and Ti48 in the deformation (�2, �) plane for the interaction

EM1.8/2.0 with emax = 8, ~! = 16 MeV (see text). Neighboring
contour lines are separated by 1 MeV.

The weights FJZN(Qi) are determined by the variational prin-
ciple, which leads to the Hill-Wheeler-Gri�n equation [24].
To solve this equation, we first diagonalize the norm ma-
trix and construct the orthonormal natural basis by removing
states with eigenvalues below some cuto↵ value. Then, we
diagonalize the Hamiltonian in the reduced subspace.

We note that because we are always using Hamiltonians in
our approach, we do not su↵er from spurious divergences and
discontinuities that a↵ect GCM applications based on nuclear
energy density functionals [45, 46].

Results and discussion. Figure 1 displays the potential
energy surfaces for Ca48 and Ti48 in the plane of defor-
mation parameters (�2, �) that are produced by the second
set of number-projected quasiparticle vacua, before angular-
momentum projection. The underlying IMSRG-evolved
Hamiltonian comes from the EM1.8/2.0 interaction with
emax = 8 and ~! = 16 MeV. The quadrupole-deformation
parameters are defined as �2 ⌘ 4⇡/(3AR2

0)
p

q20 + 2q22 with
R0 = 1.2A1/2, where A is the mass number, and � ⌘
arctan

p
2q22/q20. For convenience, we use the bare rather

than the evolved quadrupole operators to define �2 and �; this
has no e↵ect on our computed observables. The figure shows
that Ca48 has a pronounced energy minimum at a spherical
shape, and that the energy of Ti48 has a similarly pronounced
minimum at a prolate shape with �2 ⇠ 0.2 and � = 0.0. The
e↵ect of triaxiality on the low-lying states of both nuclei and
on the NME should be negligible.

We compute all quantities with the chiral interactions dis-
cussed above, and with a range of values for emax and ~! (see
supplemental material for details.) For the EM1.8/2.0 interac-
tion, which produces satisfactory ground-state and separation
energies through mass A ⇠ 80 [47–49], we obtain extrapo-
lated ground state energies of -418.26 MeV and -422.27 MeV
for Ca48 and Ti48 , respectively. Our calculation reproduces
the ordering for the ground states of the two nuclei, but our
Q-value Q��=5.57 MeV is somewhat larger than the experi-
mental value 4.26 MeV.

Figure 2 shows the low-lying spectrum of Ti48 for the
same interactions. The spectrum is clearly rotational, though
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FIG. 2. The low-lying energy spectrum in Ti48 from the IM-
SRG+GCM calculation, with interactions and oscillator frequencies
labeled EM�/⇤(~!). The rightmost column contains experimental
data [50].

slightly stretched. Importantly, we reproduce the collective
B(E2 : 2+1 ! 0+1 ) reasonably well in all cases. The inclu-
sion of non-collective configurations from isoscalar pairing,
not shown in the figure, slightly compresses the spectra and
changes the B(E2 : 2+1 ! 0+1 ) by 5-6%, e.g., from 101 e2 fm4

to 96 e2 fm4 for the EM1.8/2.0 interaction.
The energies of the low-lying states are converged to within

a few percent with respect to the basis size (see supplemen-
tal material). For example, the excitation energies of the 2+
states in Ti48 obtained with EM1.8/2.0 or EM2.0/2.0 with
~! = 16 MeV di↵er by no more than 3 % from emax = 6
through emax = 10. For other observables, the convergence
is less obvious. The part of the E2 operator induced by the
IMSRG flow alters the B(E2)’s by less than 10%, suggest-
ing that the matrix elements of this long-range operator are
baked into the reference ensemble. We thus do not expect the
di↵erences between the E2’s in the middle two spectra to be
significantly reduced by expanding the number of shells. Sur-
prisingly, even a drastic change of the coe�cients (cI , cF) that
specify the contributions of Ca48 and Ti48 in the reference en-
semble from (0.5, 0.5) to (0.1, 0.9) changes the g.s. energy
by a mere 100-200 keV, excited states by 5% or less, and the
B(E2) by only 1%.

TABLE I. The NME M0⌫ for the decay Ca48 ! Ti48 from the IM-
SRG+GCM calculation. The results labeled by */† are from non-
standard reference ensembles with mixing weights (1/3, 2/3) and
(0.1, 0.9), respectively. For other cases the weights are (1/2, 1/2).

NME

Interaction ~! emax = 6 emax = 8 emax = 10

EM1.8/2.0 12 0.85 0.70 0.64
EM1.8/2.0 16 1.03 0.78 0.66

EM2.0/2.0 16 1.02 0.68 0.75

EM1.8/2.0⇤ 16 0.81
EM1.8/2.0† 16 0.80
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FIG. 1. The particle-number projected potential energy surfaces of
Ca48 and Ti48 in the deformation (�2, �) plane for the interaction

EM1.8/2.0 with emax = 8, ~! = 16 MeV (see text). Neighboring
contour lines are separated by 1 MeV.

The weights FJZN(Qi) are determined by the variational prin-
ciple, which leads to the Hill-Wheeler-Gri�n equation [24].
To solve this equation, we first diagonalize the norm ma-
trix and construct the orthonormal natural basis by removing
states with eigenvalues below some cuto↵ value. Then, we
diagonalize the Hamiltonian in the reduced subspace.

We note that because we are always using Hamiltonians in
our approach, we do not su↵er from spurious divergences and
discontinuities that a↵ect GCM applications based on nuclear
energy density functionals [45, 46].

Results and discussion. Figure 1 displays the potential
energy surfaces for Ca48 and Ti48 in the plane of defor-
mation parameters (�2, �) that are produced by the second
set of number-projected quasiparticle vacua, before angular-
momentum projection. The underlying IMSRG-evolved
Hamiltonian comes from the EM1.8/2.0 interaction with
emax = 8 and ~! = 16 MeV. The quadrupole-deformation
parameters are defined as �2 ⌘ 4⇡/(3AR2

0)
p

q20 + 2q22 with
R0 = 1.2A1/2, where A is the mass number, and � ⌘
arctan

p
2q22/q20. For convenience, we use the bare rather

than the evolved quadrupole operators to define �2 and �; this
has no e↵ect on our computed observables. The figure shows
that Ca48 has a pronounced energy minimum at a spherical
shape, and that the energy of Ti48 has a similarly pronounced
minimum at a prolate shape with �2 ⇠ 0.2 and � = 0.0. The
e↵ect of triaxiality on the low-lying states of both nuclei and
on the NME should be negligible.

We compute all quantities with the chiral interactions dis-
cussed above, and with a range of values for emax and ~! (see
supplemental material for details.) For the EM1.8/2.0 interac-
tion, which produces satisfactory ground-state and separation
energies through mass A ⇠ 80 [47–49], we obtain extrapo-
lated ground state energies of -418.26 MeV and -422.27 MeV
for Ca48 and Ti48 , respectively. Our calculation reproduces
the ordering for the ground states of the two nuclei, but our
Q-value Q��=5.57 MeV is somewhat larger than the experi-
mental value 4.26 MeV.

Figure 2 shows the low-lying spectrum of Ti48 for the
same interactions. The spectrum is clearly rotational, though
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FIG. 2. The low-lying energy spectrum in Ti48 from the IM-
SRG+GCM calculation, with interactions and oscillator frequencies
labeled EM�/⇤(~!). The rightmost column contains experimental
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slightly stretched. Importantly, we reproduce the collective
B(E2 : 2+1 ! 0+1 ) reasonably well in all cases. The inclu-
sion of non-collective configurations from isoscalar pairing,
not shown in the figure, slightly compresses the spectra and
changes the B(E2 : 2+1 ! 0+1 ) by 5-6%, e.g., from 101 e2 fm4

to 96 e2 fm4 for the EM1.8/2.0 interaction.
The energies of the low-lying states are converged to within

a few percent with respect to the basis size (see supplemen-
tal material). For example, the excitation energies of the 2+
states in Ti48 obtained with EM1.8/2.0 or EM2.0/2.0 with
~! = 16 MeV di↵er by no more than 3 % from emax = 6
through emax = 10. For other observables, the convergence
is less obvious. The part of the E2 operator induced by the
IMSRG flow alters the B(E2)’s by less than 10%, suggest-
ing that the matrix elements of this long-range operator are
baked into the reference ensemble. We thus do not expect the
di↵erences between the E2’s in the middle two spectra to be
significantly reduced by expanding the number of shells. Sur-
prisingly, even a drastic change of the coe�cients (cI , cF) that
specify the contributions of Ca48 and Ti48 in the reference en-
semble from (0.5, 0.5) to (0.1, 0.9) changes the g.s. energy
by a mere 100-200 keV, excited states by 5% or less, and the
B(E2) by only 1%.

TABLE I. The NME M0⌫ for the decay Ca48 ! Ti48 from the IM-
SRG+GCM calculation. The results labeled by */† are from non-
standard reference ensembles with mixing weights (1/3, 2/3) and
(0.1, 0.9), respectively. For other cases the weights are (1/2, 1/2).

NME

Interaction ~! emax = 6 emax = 8 emax = 10

EM1.8/2.0 12 0.85 0.70 0.64
EM1.8/2.0 16 1.03 0.78 0.66

EM2.0/2.0 16 1.02 0.68 0.75

EM1.8/2.0⇤ 16 0.81
EM1.8/2.0† 16 0.80

Yao, Bally, Engel, Wirth, Rodriguez, Hergert,
PRL 124, 232501 (2020) 
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Figure 5.12 – Surface d’énergie potentielle du 254No, 256Rf et 246Fm calcul avec inter-

action effective Kuo-Herling [102, 103], la séparation des lignes du contour est 1 MeV,

0.25 MeV pour les lignes pointillées.
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Figure 5.13 – Spectres rotationnelles des noyaux 254No et 256Rf, obtenus par calculs

Hartree-Fock avec projetion sur l’état axial prolate, énergie est en KeV, les valeurs

exprérimentales sont tiréss de ref. [104, 105, 107].

Bande rotationnelle du 256Rf

Le 256Rf est un noyau qui a la structure très similaire à celui du 254No, la surface

dénergie potentielle et les spectres rotationnelles sont présentés dans la Fig. 5.12 et Fig.

5.13. On voir que les occupations des orbites sphériques sont remplis principalement

les trois premiers couches pour protons et neutrons voir Tab. 5.2.
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TABLE I. Different PGCM approximation schemes used to com-
pute the structure of calcium isotopes.

Label Energy minimization Collective coordinates

PGCM1 HFB (β2, γ )
PGCM2 PNVAP (β2, γ )
PGCM3 PNVAP (β2, γ , δnn )

where C = 3r2
0 A5/3

8π
, r0 = 1.2 fm, and A is the total mass number

(including core and valence space particles). Additionally,
electromagnetic transitions and moments are calculated with
the effective charge ep for protons and en for neutrons. In the
p f shell, we choose the standard values 1.5 and 0.5 for protons
and neutrons, respectively [8,9].

Pairing degrees of freedom can be explored by constraining
the expectation value of a pair creation operator with respect
to the intrinsic states. In this work, we use an operator that
couples pairs within a given orbit ă ≡ (na, la, ja, sa, ta) to a
good total angular momentum J and total isospin T [48,49],

[P̂†]JT
MJ MT

=
∑

ă

[P̂†
ă ]JT

MJ MT

= 1√
2

∑

ă

√
2 ja + 1[c†

ăc†
ă]JT

MJ MT
, (12)

where the creation operators are JT coupled according to

[c†
ăc†

b̆
]JT
MJ MT

=
√

1 − δăb̆(−1)J+T

1 + δăb̆

∑

mja mjb
mta mtb

c†
ac†

b

×
〈
jamja jbmjb

∣∣JMJ
〉〈 1

2 mta
1
2 mtb

∣∣T MT
〉
. (13)

Both isoscalar (T = 0, J = 1) pn pairing and isovector (T =
1, J = 0) pp, nn, and pn pairing can be explored with these
operators. In this work, we only study the nn-pairing channel
(T = 1, MT = 1, J = 0, MJ = 0) because only neutrons are
present in the calcium chain in the p f shell, i.e., the intrinsic
wave functions can be constrained to

δnn = 1
2 ⟨%(q)|[P̂]01

01 + [P̂†]01
01|%(q)⟩. (14)

In Table I, we summarize and label the different PGCM
schemes that are examined in the present work depending
on the type of energy minimization scheme used (HFB or
PNVAP) and the collective coordinates explored. In all cases,
particle-number (proton and neutron) and angular-momentum
(three Euler angles) projections were performed. The number
of integration points taken to discretize the integrals over
the gauge and Euler angles was large enough as to ensure
a full convergence in the nominal expectation values of the
particle-number and angular-momentum operators computed
with the GCM wave functions [Eq. (2)]. The PGCM calcu-
lations were performed using the newly developed software
TAURUS [50].
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FIG. 1. Total energy surfaces (TES) as a function of the
quadrupole degrees of freedom, (β2, γ ) calculated for the nucleus
48Ca using the following approaches: (a) HFB, (b) PNVAP, and
their corresponding particle number and angular momentum pro-
jected (PNAMP, J = 0) total energy surfaces, (c) HFB+PNAMP, and
(d) PNVAP+PNAMP. Surfaces are normalized to their respective
minimum, i.e., (a) −6.446 MeV, (b) −7.195 MeV, (c) −6.896 MeV,
and (d) −7.209 MeV. Contour lines are separated by 0.2 MeV.

III. RESULTS

A. 48Ca

In this section, we illustrate our methodology taking the
nucleus 48Ca as an example. It is noteworthy that, as it will
be demonstrated below, it represents one of the most difficult
cases for our model.

As mentioned in the previous section, the first step in our
method is the construction of a set of quasiparticle states
through a series of constrained HFB/PNVAP calculations. It
is important to point out that in a restricted valence space the
range of admissible values for the constraints is much more
limited than in a no-core implementation. Indeed, working
with a handful of particles and single-particle states, it is not
possible to build a many-body wave function that satisfies any
arbitrary values of the constraints. For example, the largest β2
value reachable in the model space is quite small compared
to the values used in traditional EDF calculations. In the
present work, the bounds of the constraints are determined
heuristically.

The total energy as a function of the quadrupole degrees
of freedom, (β2, γ ) is represented in Fig. 1. In the top panels,
the HFB [Fig. 1(a)] and PNVAP [Fig. 1(b)] total energy
surfaces (TES) are shown. As expected in this doubly magic
nucleus, in both cases the absolute minimum is located at
the spherical configuration and the energy rises quickly with
β2 and is almost independent of γ ; also we observe that
the PNVAP surface is slightly softer. At the spherical point,
the pairing collapses in the HFB calculation, which is thus
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FIG. 3. Energy spectrum for 48Ca calculated exactly (within
the ISM framework) and with PGCM methods using the KB3G
interaction in the p f shell.

wave functions with (a) intrinsically rotating states through
cranking calculations [52,53]; and/or (b) multi-quasiparticle
excitations obtained through the blocking mechanism [25,26].
Both improvements will be explored in the future but are
beyond the scope of the present work.

Electric quadrupole transitions and moments are also com-
puted and the results of the most relevant ones are written
in Table II. We observe a slight overestimation of the exact
results in most of the transitions and moments. Furthermore,
the PGCM3 method shows, as expected, the best agreement,
and lower values of the spectroscopic quadrupole moments
are obtained whenever the pairing correlations are better
described (PNVAP vs. HFB minimization).

We now analyze two complementary aspects of the nuclear
wave functions obtained by the PGCM framework, namely,

TABLE II. Reduced transition probabilities, B(E2), and electric
spectroscopic quadrupole moments Q calculated with different meth-
ods using proton (1.5) and neutron (0.5) effective charges. The B(E2)
are given in units of e2fm4 whereas the Q are expressed in units of
efm2.

PGCM1 PGCM2 PGCM3 ISM

B(E2 : 2+
1 → 0+

1 ) 12.7 12.7 12.7 11.5
B(E2 : 2+

1 → 0+
2 ) 0.8 0.9 1.0 1.0

B(E2 : 2+
2 → 0+

1 ) 0.0 0.0 0.0 0.0
B(E2 : 2+

2 → 0+
2 ) 30.4 24.5 23.0 21.6

B(E2 : 4+
1 → 2+

1 ) 5.6 5.7 2.5 2.0
Q(2+

1 ) +5.0 +4.8 +4.4 +4.1
Q(2+

2 ) −11.4 −9.8 −9.3 −8.6
Q(4+

1 ) +10.8 +9.1 +8.3 +7.5
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FIG. 4. Collective wave functions |F!
σ (q)|2 [Eq. (15)] in the q =

(β2, γ ) plane for the lowest 0+, 2+, and 4+ states in 48Ca computed
with the PGCM2 approximation. These functions are normalized to∑

q |F γ
σ (q)|2 = 1.

the collective wave functions (c.w.f.) and the occupation
numbers of the spherical single-particle orbits. The c.w.f. are
useful quantities to reveal the role of the different collective
degrees of freedom explored with constrained calculations
and they are routinely computed in MREDF methods based
on Skyrme, Gogny, and covariant functionals. These func-
tions give the most relevant contributions of the collective
coordinates in each individual nuclear state [10,13,30] and are
defined as

∣∣F!
σ (q)

∣∣2 =
∣∣∣∣∣
∑

Kλ

G!
σ ;λu !

λ;qK

∣∣∣∣∣

2

. (15)

In Fig. 4, we plot the c.w.f. for 0+
1,2, 2+

1,2, and 4+
1,2 states in

the (β2, γ ) plane computed with the PGCM2 method. We first
note that the ground state is flat in almost the whole range
of deformations although the maximum contribution is found
around the spherical point, as we could expect for a doubly
magic nucleus. This behavior is consistent with the degener-
acy of the projected TES [Fig. 1(d)]. The 2+

1 c.w.f. is also
relatively smooth and we find a considerable mixing of oblate
and γ = 20◦ deformed states at the edges of the available β2
deformations. The rest of the c.w.f. represented in Fig. 4 are
also localized at (or nearby) the border of the β2 coordinate.
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Projected GCM as an approximation to CI
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Coupling of collective and single-particle degrees of freedom
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J rrmsp rrmsn mu Q_s
(fm) (fm) (mu_N) e fm^2

----------------------------------------
7/2 5.8769 6.0193 1.4540 596.84
9/2 5.8769 6.0194 1.8407 232.67

11/2 5.8769 6.0194 2.2308 14.27
13/2 5.8769 6.0194 2.6230 -127.63
15/2 5.8770 6.0194 3.0164 -225.40
17/2 5.8770 6.0195 3.4108 -295.86
19/2 5.8771 6.0195 3.8057 -348.48
21/2 5.8771 6.0196 4.2011 -388.91
23/2 5.8772 6.0196 4.5968 -420.74
25/2 5.8773 6.0197 4.9928 -446.29

transition B(E2) M(M1)
(e^2 fm^4) (mu_N^2)

------------------------------------
9/2 -> 7/2 55214 2.6167 E-04

11/2 -> 7/2 11834 ---
11/2 -> 9/2 55760 3.9979 E-04
13/2 -> 9/2 21953 ---
13/2 -> 11/2 47809 4.8087 E-04

In odd-A nuclei, bands get easily mixed.

Heenen, Bally, Bender, Ryssens, EPJ Web of Conf 131 (2016) 02001;

Bally, Bender, Heenen, to be published

seniority-2 states in 46Ca
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when 2qp states are mixed in

Mixed with collective bands.

Bender, Bally, Heenen, to be published
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Summary & Outlook
Mean field:

• Towards symmetry-unrestricted self-consistent mean-field describe the complex geometrical arrangement of 
nucleons (shape and direction of angular momentum).

Beyond the mean field:

• Three complementary directions to go « beyond the mean field » explored by the french community: 
vertical, vertical + feedback from horizontal, horizontal (with optional bits of vertical)

• These approaches target different phenomena, but have overlapping validity ranges.
• Choice of many-body technique and the effective energy density functional / Hamiltonian is intertwined.

Overall aims and scopes:

• Refined description of of nuclear structure and reactions.
• Better microscopic understanding of nuclear phenomena.
• Interactions with, and support for, the community of experimentalists.

Following these routes requires (and is made possible by) high-performance computing.

But don’t forget that we need suitable Hamiltonians and/or energy density functionals for these techniques!


