Mean-Field and Beyond Mean-Field approaches for nuclear structure

Michael Bender (IP2I)
Marcella Grasso (IJCLab) \& Nathalie Pillet (CEA DAM)

Atelier «Physique théorique des deux infinis»
7-8 Juin 2021 en distanciel

cins

The starting point: The self-consistent mean field

Variational principle

$$
\delta E_{\psi}=0 \quad \rightarrow \quad h \varphi=\varepsilon \varphi
$$

The total energy is calculated from a many product state $\mid \Psi>$, either directly as the expectation value of a Hamiltionian or indirectly as an energy density functional constructed from the one-body density matrices of such state.

- Energy-optimised single-particle states φ
- Brillouin's theorem: no coupling between ground state and 1p-1h excitations
- Lowest state might be symmetry breaking (deformation, pairing, ...)
- Can be used to scan total energy as a function of « collective variables "
- Time-dependent variant can be linearised \rightarrow RPA
- Starting point for «vertical» and «horizontal» expansions.

Describing complex nuclear phénomena starting with simple states

Ongoing developments in France

- (Towards) symmetry-unrestriced self-consistent mean-field calculations
- Subtracted Second Random Phase Approximation (generalisation of of RPA in a vertical expansion)
- Multi-particle-multi-hole approach (configuration mixing in a vertical expansion optimising the reference)
- Symmetry-restored Generator Coordinate Method (configuration mixing in a horizontal expansion)

Related topics not covered here:

- Need for generalised (effective) interactions (talk by Marcella Grasso)
- Need for improved and/or specific fit protocols (talk by Marcella Grasso)
- Improved explicit time evolution (talk by David Regnier)

Symmetry-unrestricted self-consistent mean fields for complex and exotic configurations of nuclei

Physics cases:

- Exotic shapes dominated by high multipoles
- Fission paths
- Relative orientation of the collective angular momentum, angular momenta of single-particle states and the shape

Codes are more difficult to set up and run:

- Often multi-constrainted calculations needed
- Additional constraints needed to fix center of mass and relative orientations

Spin distribution is different when choosing angular momentum to be aligned with the long axis or a short one
softness against non-axial octupole deformation depends on the parameterisation of the EDF!

THE SSRPA MODEL

M. Grasso in collaboration with D. Gambacurta (LNS, Catania) What we want to describe: excitation spectra in a many-body system.
Important experimental program in France and all over the world for measuring charge-conserving and charge-exchange excitations in nuclei

Adding fluctuations to the self-energy generated by particlehole bubbles (random-phase approximation)

... but not enough to describe widths and strength fragmentation of collective modes. NEED TO GO BEYOND!!!

How: subtracted second random-phase approximation (SSRPA)-> two particle-two hole (2p2h) configurations included in the excitation operators.

The self-energy becomes energy dependent and incorporates beyond-mean-field effects (individual degrees of freedom couples with 2p2h configurations). Subtraction procedure for handling double-counted correlations
-> state-of-the-art model for predicting excitation spectra

$$
\begin{aligned}
Q_{v}^{\dagger}= & \sum_{p h}\left(X_{p h}^{v} a_{p}^{\dagger} a_{h}-Y_{p h}^{v} a_{h}^{\dagger} a_{p}\right) \\
& +\sum_{n<p^{\prime}, h<h^{\prime}}\left(X_{p h p^{\prime} h^{\prime}}^{v} a_{p}^{\dagger} a_{h} a_{p^{\prime}}^{\dagger} a_{h^{\prime}}-Y_{p h p^{\prime} h^{\prime}}^{v} a_{h}^{\dagger} a_{p} a_{h^{\prime}}^{\dagger} a_{p^{\prime}}\right.
\end{aligned}
$$

Heavy numerical problem, unaffordable up to one decade ago (strong cuts and approximations were done)

Vasseur, Gambacurta, Grasso, PRC 98, 044313 (2018)

Centroid: 20.73 MeV Width: $\mathbf{2 . 4 2} \mathrm{MeV}$

Centroid: $\mathbf{2 0 . 2 1} \mathbf{M e V}$ Width: 4.05 MeV

The mystery of the missing GT strength: 2p2h configurations have a density that increases with the excitation energy. This pushes an important amount of strength to high energy

Centroid: 19.76 MeV Width: 5.11 MeV

Calc: Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)
Expt: Lui, Clark, Youngblood, PRC 64, 064308 (2001)
Globally: better agreement with the experimental data compared to RPA

Impact: some recent work

Electric dipole polarizability in ${ }^{48} \mathrm{Ca}$,
Gambacurta, Grasso, Vasseur, Phys Lett. B 777, 163 (2018)
Systematic study of axial compression modes,
Vasseur, Gambacurta, Grasso, Phys Rev C 98, 044313 (2018)
Beyond-mean-field effects on effective masses, Grasso, Gambacurta, Vasseur, Phys Rev C 98,051303 (R) (2018)

Beyond-mean-field effects on the symmertry energy and its slope from the low-lying dipole response of ${ }^{68} \mathrm{Ni}$, Grasso and Gambacurta, Phys. Rev. C 101, 064314 (2020)

Gamow-Teller strengths in ${ }^{48} \mathrm{Ca}$ and ${ }^{78} \mathrm{Ni}$ with the charge exchange subtracted second random-phase approximation, Gambacurta, Grasso, Engel, Phys. Rev. Lett. 125, 212501 (2020)

Beyond-mean-field effects on infinite matter properties

Well-established interactions with experimentalists.

```
Important achievement
- For the community working on
charge-exchange excitations: starting
now systematic applications
- Towards the computation of nuclear
matrix elements for neutrinoless
double beta decay (see talk by F.
Nowacki)
```


Multi-particle-multi-hole approach

Trial wave function : Superposition of Slater determinants
$\left.|\Psi\rangle=A_{0 p 0 h}\left|\Phi_{0 p 0 h}\right\rangle+\sum_{1 p 1 h} A_{1 p 1 h}\left|\Phi_{1 p 1 h}\right\rangle+\sum_{2 p 2 h} A_{2 p 2 h}\left|\Phi_{2 p 2 h}\right\rangle+\sum_{3 p 3 h} A_{3 p 3 h} \Phi_{3 p 3 h}\right\rangle+\ldots$
Advantages : Symmetry preservation (particle numbers, rotational invariance, Pauli principle, ...)
Applicable to even-even, odd and odd-odd nuclei
Diagonalization of the Hamiltonian in the N -body space P

$$
\delta \mathcal{E}[\Psi] /\left\{A_{\alpha}^{*}\right\}=0 \quad \sum_{\beta} A_{\beta}\left\langle\phi_{\alpha}\right| \hat{H}\left|\phi_{\beta}\right\rangle=E A_{\alpha}
$$

Truncated Hilbert space

$\left|\Phi_{0 \text { on }}\right\rangle=\prod_{i}\left[a_{0} 0\right\rangle$
 => All types of correlations (static and dvnamical ones) :

Optimization of the orbitals consistently with the N-body correlations in P+Q space

$$
\delta \mathcal{E}[\Psi]_{/\left\{\varphi_{i}^{*}\right\}}=\langle\Psi|[\hat{H}, \hat{T}]|\Psi\rangle=0<[\hat{h}(\rho), \hat{\rho}]=\hat{G}(\sigma)
$$

"Generalized Brillouin equation"
(equivalent to solving a Dyson equation)
Interactions : MPMH approach usable with both bare and effective interactions (talk M. Grasso)

Future developments

Formal developments :

- Building of the Hessian matrix : Are there situations in which the variations according to $\{A\}$ and $\{\varnothing\}$ are correlated?
- (short range versus long range correlations)
- MPMH renormalized operators (effective operators)
- Input for nuclear reaction models and building of an optical potential (see talk by G. Hupin)

Numerical challenges :

- Going to heavy nuclei
- Porting to HPC in the era of exascale computing
- Efficient truncation schemes / role of meta-modeling and AI (see talk by G. Hupin)

Examples of physics cases :

- Low-energy spectroscopy of stable and exotic nuclei
- Evolution of shell closures and their signatures
- Proton-neutron pairing correlations
- Multipolar resonances and electro-weak transitions
- Halos, triton and alpha clustering in light nuclei (quantum entanglement)
(mixing in the sd-shell only, Gogny D1S)

Example : Orbital optimization effect on excitation energies
T=0 component of the Gogny force
(lack of tensor term, Pillet et al. PRC 85, 044315 (2012))

$$
\begin{array}{r}
\text { All }\left\{\begin{array}{c}
\left\langle\Delta E^{*}\right\rangle=373 \mathrm{keV} \\
\sigma\left(\Delta E^{*}\right)=517 \mathrm{keV}
\end{array}\right. \\
\begin{array}{c}
{ }^{30} \mathrm{~S} \&{ }^{30} \mathrm{Si} \\
\text { excluded }
\end{array}\left\{\begin{array}{c}
\left\langle\Delta E^{*}\right\rangle=226 \mathrm{keV} \\
\sigma\left(\Delta E^{*}\right)=214 \mathrm{keV}
\end{array}\right.
\end{array}
$$

$$
\begin{array}{r}
\text { All }\left\{\begin{array}{c}
\left\langle\Delta E^{*}\right\rangle=235 \mathrm{keV} \\
\sigma\left(\Delta E^{*}\right)=323 \mathrm{keV}
\end{array}\right. \\
\begin{array}{c}
{ }^{30} \mathrm{~S} \&{ }^{30} \mathrm{Si} \\
\text { excluded }
\end{array}\left\{\begin{array}{c}
\left\langle\Delta E^{*}\right\rangle=142 \mathrm{keV} \\
\sigma\left(\Delta E^{*}\right)=122 \mathrm{keV}
\end{array}\right.
\end{array}
$$

Symmetry-restored Generator Coordinate Method

Toolbox that can be used in many different contexts and that can be embedded into many frameworks:

- MR-EDF (beyond the symmetry-breaking self-consistent mean-field)
- Valence-space Hamiltonians (filter to target specific excitations in shell-model calculations)
- Ab-initio methods of various flavours

Projection (on particle number, angular momentum, parity, isospin, center-of-mass momentum, ...)

$$
\left|\Psi_{\epsilon}^{\lambda i}\right\rangle=\sum_{j=1}^{d_{\lambda}} f_{\epsilon}^{\lambda j} \hat{P}_{i j}^{\lambda}|\Theta\rangle
$$

$$
\boldsymbol{H}^{\lambda} \boldsymbol{f}_{\epsilon}^{\lambda}=e_{\epsilon}^{\lambda} \boldsymbol{N}^{\lambda} \boldsymbol{f}_{\epsilon}^{\lambda}
$$

Refined description of of nuclear structure and reactions:
see B. Bally \& M. Bender, PRC103 (2021) 924315 for everything you always wanted to know about projection but were afraid to ask.

- Additional correlations not grasped by symmetry breaking
- Restoration of selection rules for electromagnetic, weak, ... transitions

Generator Coordinate Method

$$
\left|\Phi_{E}^{\lambda i}\right\rangle=\sum_{q} f_{q, E}^{\lambda i}\left|\Psi^{\lambda i}(q)\right\rangle
$$

- Configuration mixing of non-orthogonal states (shapes, angular momenta, intensity of pairing, ...)

Shape coexistence \& mixing
Q_{0} (b)

Ground-state correlations

Neutron Number N

Revelant for

- mass spectrometry
- prompt gamma-ray spectroscopy
- decay spectroscopy
- laser spectroscopy
- electron scattering
- Coulomb excitation

density distribution of projected states in the laboratory frame
numbers in colour are dimensionless

MR EDF of SHE

Projected GCM as an approximation to Cl

Summary \& Outlook

Mean field:

- Towards symmetry-unrestricted self-consistent mean-field describe the complex geometrical arrangement of nucleons (shape and direction of angular momentum).

Beyond the mean field:

- Three complementary directions to go « beyond the mean field » explored by the french community: vertical, vertical + feedback from horizontal, horizontal (with optional bits of vertical)
- These approaches target different phenomena, but have overlapping validity ranges.
- Choice of many-body technique and the effective energy density functional / Hamiltonian is intertwined.

Overall aims and scopes:

- Refined description of of nuclear structure and reactions.
- Better microscopic understanding of nuclear phenomena.
- Interactions with, and support for, the community of experimentalists.

Following these routes requires (and is made possible by) high-performance computing.
But don't forget that we need suitable Hamiltonians and/or energy density functionals for these techniques!

