Modified gravity in Cosmology & Astrophysics

David Langlois (APC, Paris)

Astroparticules et Cosmologie

Introduction

- So far, **GR** seems compatible with all observations.
- Several motivations for exploring modified gravity
 - Quantum gravity effects
 - Understand cosmological acceleration (or possibly dark matter)
 - Explore alternative gravitational theories
 - Testing gravity
- Modified gravity actively studied in two main contexts:
 - In cosmology (alternative to the cosmological constant, exotic early Universe models)
 - In astrophysics: compact objects (black holes, neutron stars)

Modified gravity

It is rather difficult to modify gravity:

- 1. The theory must be **internally consistent** (e.g. no problematic instabilities)
- The theory must look like GR in all regimes where GR has been tested Lab tests, Solar system, Binary pulsars (and now binary BH)
- 3. Hopefully (but not necessarily), the theory should **account for the observed acceleration** and exhibit some **distinctive signatures**.

Modified gravity in Cosmology

- Goal: Explain the observed cosmological acceleration
 without cosmological constant
- Most models are based on scalar-tensor theories:
 - Traditional models: $\mathcal{L}(\nabla_{\lambda}\phi,\phi)$

- Generalised models: $\mathcal{L}(\nabla_{\mu}\nabla_{\nu}\phi, \nabla_{\lambda}\phi, \phi)$
- New phenomenology on cosmological scales

Higher order scalar-tensor theories

- Generalized theories: $\mathcal{L}(\nabla_{\mu}\nabla_{\nu}\phi, \nabla_{\lambda}\phi, \phi)$
- DHOST: most general family of covariant scalar-tensor theories with a single scalar DOF

Modified gravity in Cosmology

Internal consistency of the model

No problematic instabilities

Potential new signatures:

- Speed of gravitational waves different from *c* [but GW170817 has probed only wavelengths 10³ km]
- Evolution of perturbations differs from Lambda-CDM predictions
- Many models: effective approach that can describe all (or most) models is useful
- Future observations: Euclid, LSST...

Effective description of dark energy

Modified gravity in Astrophysics

- Explore modified gravity in the strong-field regime
- Compact objects:
 - Black holes
 - Neutron stars
- New probe
 Gravitational waves

Black holes in modified gravity

- Static solutions
 - Various exact solutions
 - Extra field: scalar field or vector field
- Linear perturbations:
 - Odd-parity & even-parity modes
 - Quasi-normal modes
- Rotating solutions
 - Kerr or Kerr-like solutions ?
 - Perturbations
- Description of binary systems

Neutron stars in modified gravity

Internal solution

System analog to Tolman-Oppenheimer-Volkov equations

Mass-radius relations

Sakstein, Babichev, Koyama, DL & Saito '16

Kobayashi & Hiramatsu '1803

Conclusions

- Exploring modified gravity is ubiquitous in works on cosmology and compact objects.
- There is no compelling theory of modified gravity at present but parametrized models enable us to test GR.
- In cosmology, general family of scalar-tensor theories, encompassing most theories of interest, as well as an effective framework to connect theories to the phenomenology of cosmological perturbations.
- Deviations from GR in the context of compact objects (e.g. neutron stars & black holes) is more diverse and more complex.